Agent-Based Model to Study and Quantify the Evolution Dynamics of Android Malware Infection
In the last years the number of malware Apps that the users download to their devices has risen. In this paper, we propose an agent-based model to quantify the Android malware infection evolution, modeling the behavior of the users and the different markets where the users may download Apps. The mod...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2014/623436 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832549348956700672 |
---|---|
author | Juan Alegre-Sanahuja Javier Camacho Juan Carlos Cortés López Francisco-José Santonja Rafael Jacinto Villanueva Micó |
author_facet | Juan Alegre-Sanahuja Javier Camacho Juan Carlos Cortés López Francisco-José Santonja Rafael Jacinto Villanueva Micó |
author_sort | Juan Alegre-Sanahuja |
collection | DOAJ |
description | In the last years the number of malware Apps that the users download to their devices has risen. In this paper, we propose an agent-based model to quantify the Android malware infection evolution, modeling the behavior of the users and the different markets where the users may download Apps. The model predicts the number of infected smartphones depending on the type of malware. Additionally, we will estimate the cost that the users should afford when the malware is in their devices. We will be able to analyze which part is more critical: the users, giving indiscriminate permissions to the Apps or not protecting their devices with antivirus software, or the Android platform, due to the vulnerabilities of the Android devices that permit their rooted. We focus on the community of Valencia, Spain, although the obtained results can be extrapolated to other places where the number of Android smartphones remains fairly stable. |
format | Article |
id | doaj-art-feb7ce863afd411985778bd8373725ae |
institution | Kabale University |
issn | 1085-3375 1687-0409 |
language | English |
publishDate | 2014-01-01 |
publisher | Wiley |
record_format | Article |
series | Abstract and Applied Analysis |
spelling | doaj-art-feb7ce863afd411985778bd8373725ae2025-02-03T06:11:41ZengWileyAbstract and Applied Analysis1085-33751687-04092014-01-01201410.1155/2014/623436623436Agent-Based Model to Study and Quantify the Evolution Dynamics of Android Malware InfectionJuan Alegre-Sanahuja0Javier Camacho1Juan Carlos Cortés López2Francisco-José Santonja3Rafael Jacinto Villanueva Micó4Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, 46022 Valencia, SpainInstituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, 46022 Valencia, SpainInstituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, 46022 Valencia, SpainDepartamento de Estadstica e Investigación Operativa, Universitat de València, 46100 Valencia, SpainInstituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, 46022 Valencia, SpainIn the last years the number of malware Apps that the users download to their devices has risen. In this paper, we propose an agent-based model to quantify the Android malware infection evolution, modeling the behavior of the users and the different markets where the users may download Apps. The model predicts the number of infected smartphones depending on the type of malware. Additionally, we will estimate the cost that the users should afford when the malware is in their devices. We will be able to analyze which part is more critical: the users, giving indiscriminate permissions to the Apps or not protecting their devices with antivirus software, or the Android platform, due to the vulnerabilities of the Android devices that permit their rooted. We focus on the community of Valencia, Spain, although the obtained results can be extrapolated to other places where the number of Android smartphones remains fairly stable.http://dx.doi.org/10.1155/2014/623436 |
spellingShingle | Juan Alegre-Sanahuja Javier Camacho Juan Carlos Cortés López Francisco-José Santonja Rafael Jacinto Villanueva Micó Agent-Based Model to Study and Quantify the Evolution Dynamics of Android Malware Infection Abstract and Applied Analysis |
title | Agent-Based Model to Study and Quantify the Evolution Dynamics of Android Malware Infection |
title_full | Agent-Based Model to Study and Quantify the Evolution Dynamics of Android Malware Infection |
title_fullStr | Agent-Based Model to Study and Quantify the Evolution Dynamics of Android Malware Infection |
title_full_unstemmed | Agent-Based Model to Study and Quantify the Evolution Dynamics of Android Malware Infection |
title_short | Agent-Based Model to Study and Quantify the Evolution Dynamics of Android Malware Infection |
title_sort | agent based model to study and quantify the evolution dynamics of android malware infection |
url | http://dx.doi.org/10.1155/2014/623436 |
work_keys_str_mv | AT juanalegresanahuja agentbasedmodeltostudyandquantifytheevolutiondynamicsofandroidmalwareinfection AT javiercamacho agentbasedmodeltostudyandquantifytheevolutiondynamicsofandroidmalwareinfection AT juancarloscorteslopez agentbasedmodeltostudyandquantifytheevolutiondynamicsofandroidmalwareinfection AT franciscojosesantonja agentbasedmodeltostudyandquantifytheevolutiondynamicsofandroidmalwareinfection AT rafaeljacintovillanuevamico agentbasedmodeltostudyandquantifytheevolutiondynamicsofandroidmalwareinfection |