Triple-effect correction for Cell Painting data with contrastive and domain-adversarial learning
Abstract Cell Painting (CP), as a high-throughput imaging technology, generates extensive cell-stained imaging data, providing unique morphological insights for biological research. However, CP data contains three types of technical effects, referred to as triple effects, including batch effects, gr...
Saved in:
| Main Authors: | , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-07-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-62193-z |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|