Deployment and evaluation of an NH<sub>4</sub><sup>+</sup>∕ H<sub>3</sub>O<sup>+</sup> reagent ion switching chemical ionization mass spectrometer for the detection of reduced and oxygenated gas-phase organic compounds
<p>Reactive organic carbon (ROC) is diverse in its speciation, functionalization, and volatility, with varying implications for ozone production and secondary organic aerosol formation and growth. Chemical ionization mass spectrometry (CIMS) approaches can provide in situ ROC observations, and...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2025-01-01
|
Series: | Atmospheric Measurement Techniques |
Online Access: | https://amt.copernicus.org/articles/18/17/2025/amt-18-17-2025.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1841557116315238400 |
---|---|
author | C. L. Zang M. D. Willis |
author_facet | C. L. Zang M. D. Willis |
author_sort | C. L. Zang |
collection | DOAJ |
description | <p>Reactive organic carbon (ROC) is diverse in its speciation, functionalization, and volatility, with varying implications for ozone production and secondary organic aerosol formation and growth. Chemical ionization mass spectrometry (CIMS) approaches can provide in situ ROC observations, and the CIMS reagent ion controls the detectable ROC species. To expand the range of detectable ROC, we describe a method for switching between the reagent ions <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="3226c502fdca30fe88bf9305df4b3716"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-18-17-2025-ie00004.svg" width="24pt" height="15pt" src="amt-18-17-2025-ie00004.png"/></svg:svg></span></span> and <span class="inline-formula">H<sub>3</sub>O<sup>+</sup></span> in a Vocus chemical ionization time-of-flight mass spectrometer (Vocus-CI-ToFMS). We describe optimization of ion–molecule reactor conditions for both reagent ions, at the same temperature, and compare the ability of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="9641cdd414b305565815b5b604dabf23"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-18-17-2025-ie00005.svg" width="24pt" height="15pt" src="amt-18-17-2025-ie00005.png"/></svg:svg></span></span> and <span class="inline-formula">H<sub>3</sub>O<sup>+</sup></span> to detect a variety of volatile organic compounds (VOCs) and semi-volatile and intermediate-volatility organic compounds (SVOCs and IVOCs), including oxygenates and organic sulfur compounds. Sensitivities are comparable to other similar instruments (up to <span class="inline-formula">∼</span>5 <span class="inline-formula">counts</span> <span class="inline-formula">s<sup>−1</sup></span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><msubsup><mi mathvariant="normal">ppt</mi><mi mathvariant="normal">v</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="27pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="03e69d0b8a5da11c6fbc4c8c60f3b361"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-18-17-2025-ie00006.svg" width="27pt" height="16pt" src="amt-18-17-2025-ie00006.png"/></svg:svg></span></span>), with detection limits on the order of 1–10 s of <span class="inline-formula">ppt<sub>v</sub></span> (1 <span class="inline-formula">s</span> integration time). We report a method for characterizing and filtering periods of hysteresis following each reagent ion switch and compare use of reagent ions, persistent ambient ions, and a deuterated internal standard for diagnosing this hysteresis. We deploy <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup><mo>/</mo><msub><mi mathvariant="normal">H</mi><mn mathvariant="normal">3</mn></msub><msup><mi mathvariant="normal">O</mi><mo>+</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="57pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="76eebc6c86e1f2961d607ea8607c9e30"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-18-17-2025-ie00007.svg" width="57pt" height="15pt" src="amt-18-17-2025-ie00007.png"/></svg:svg></span></span> reagent ion switching in a rural pine forest in central Colorado, US, and use our ambient measurements to compare the capabilities of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="7b888eb222795ca6a6dd2ceb535b59a0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-18-17-2025-ie00008.svg" width="24pt" height="15pt" src="amt-18-17-2025-ie00008.png"/></svg:svg></span></span> and <span class="inline-formula">H<sub>3</sub>O<sup>+</sup></span> in the same instrument, without interferences from variation in instrument and inlet designs. We find that <span class="inline-formula">H<sub>3</sub>O<sup>+</sup></span> optimally detects reduced ROC species with high volatility, while <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M21" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="fc7f721ac75f3b099ec2891c91941f4b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-18-17-2025-ie00009.svg" width="24pt" height="15pt" src="amt-18-17-2025-ie00009.png"/></svg:svg></span></span> improves detection of functionalized ROC compounds, including organic nitrates and oxygenated SVOCs and IVOCs that are readily fragmented by <span class="inline-formula">H<sub>3</sub>O<sup>+</sup></span>.</p> |
format | Article |
id | doaj-art-f6d45dcfb5d0427bb7a1c2528d6555f4 |
institution | Kabale University |
issn | 1867-1381 1867-8548 |
language | English |
publishDate | 2025-01-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Measurement Techniques |
spelling | doaj-art-f6d45dcfb5d0427bb7a1c2528d6555f42025-01-06T18:24:12ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482025-01-0118173510.5194/amt-18-17-2025Deployment and evaluation of an NH<sub>4</sub><sup>+</sup>∕ H<sub>3</sub>O<sup>+</sup> reagent ion switching chemical ionization mass spectrometer for the detection of reduced and oxygenated gas-phase organic compoundsC. L. Zang0M. D. Willis1Department of Chemistry, Colorado State University, Fort Collins, CO, USADepartment of Chemistry, Colorado State University, Fort Collins, CO, USA<p>Reactive organic carbon (ROC) is diverse in its speciation, functionalization, and volatility, with varying implications for ozone production and secondary organic aerosol formation and growth. Chemical ionization mass spectrometry (CIMS) approaches can provide in situ ROC observations, and the CIMS reagent ion controls the detectable ROC species. To expand the range of detectable ROC, we describe a method for switching between the reagent ions <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="3226c502fdca30fe88bf9305df4b3716"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-18-17-2025-ie00004.svg" width="24pt" height="15pt" src="amt-18-17-2025-ie00004.png"/></svg:svg></span></span> and <span class="inline-formula">H<sub>3</sub>O<sup>+</sup></span> in a Vocus chemical ionization time-of-flight mass spectrometer (Vocus-CI-ToFMS). We describe optimization of ion–molecule reactor conditions for both reagent ions, at the same temperature, and compare the ability of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="9641cdd414b305565815b5b604dabf23"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-18-17-2025-ie00005.svg" width="24pt" height="15pt" src="amt-18-17-2025-ie00005.png"/></svg:svg></span></span> and <span class="inline-formula">H<sub>3</sub>O<sup>+</sup></span> to detect a variety of volatile organic compounds (VOCs) and semi-volatile and intermediate-volatility organic compounds (SVOCs and IVOCs), including oxygenates and organic sulfur compounds. Sensitivities are comparable to other similar instruments (up to <span class="inline-formula">∼</span>5 <span class="inline-formula">counts</span> <span class="inline-formula">s<sup>−1</sup></span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><msubsup><mi mathvariant="normal">ppt</mi><mi mathvariant="normal">v</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="27pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="03e69d0b8a5da11c6fbc4c8c60f3b361"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-18-17-2025-ie00006.svg" width="27pt" height="16pt" src="amt-18-17-2025-ie00006.png"/></svg:svg></span></span>), with detection limits on the order of 1–10 s of <span class="inline-formula">ppt<sub>v</sub></span> (1 <span class="inline-formula">s</span> integration time). We report a method for characterizing and filtering periods of hysteresis following each reagent ion switch and compare use of reagent ions, persistent ambient ions, and a deuterated internal standard for diagnosing this hysteresis. We deploy <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup><mo>/</mo><msub><mi mathvariant="normal">H</mi><mn mathvariant="normal">3</mn></msub><msup><mi mathvariant="normal">O</mi><mo>+</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="57pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="76eebc6c86e1f2961d607ea8607c9e30"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-18-17-2025-ie00007.svg" width="57pt" height="15pt" src="amt-18-17-2025-ie00007.png"/></svg:svg></span></span> reagent ion switching in a rural pine forest in central Colorado, US, and use our ambient measurements to compare the capabilities of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="7b888eb222795ca6a6dd2ceb535b59a0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-18-17-2025-ie00008.svg" width="24pt" height="15pt" src="amt-18-17-2025-ie00008.png"/></svg:svg></span></span> and <span class="inline-formula">H<sub>3</sub>O<sup>+</sup></span> in the same instrument, without interferences from variation in instrument and inlet designs. We find that <span class="inline-formula">H<sub>3</sub>O<sup>+</sup></span> optimally detects reduced ROC species with high volatility, while <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M21" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="fc7f721ac75f3b099ec2891c91941f4b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-18-17-2025-ie00009.svg" width="24pt" height="15pt" src="amt-18-17-2025-ie00009.png"/></svg:svg></span></span> improves detection of functionalized ROC compounds, including organic nitrates and oxygenated SVOCs and IVOCs that are readily fragmented by <span class="inline-formula">H<sub>3</sub>O<sup>+</sup></span>.</p>https://amt.copernicus.org/articles/18/17/2025/amt-18-17-2025.pdf |
spellingShingle | C. L. Zang M. D. Willis Deployment and evaluation of an NH<sub>4</sub><sup>+</sup>∕ H<sub>3</sub>O<sup>+</sup> reagent ion switching chemical ionization mass spectrometer for the detection of reduced and oxygenated gas-phase organic compounds Atmospheric Measurement Techniques |
title | Deployment and evaluation of an NH<sub>4</sub><sup>+</sup>∕ H<sub>3</sub>O<sup>+</sup> reagent ion switching chemical ionization mass spectrometer for the detection of reduced and oxygenated gas-phase organic compounds |
title_full | Deployment and evaluation of an NH<sub>4</sub><sup>+</sup>∕ H<sub>3</sub>O<sup>+</sup> reagent ion switching chemical ionization mass spectrometer for the detection of reduced and oxygenated gas-phase organic compounds |
title_fullStr | Deployment and evaluation of an NH<sub>4</sub><sup>+</sup>∕ H<sub>3</sub>O<sup>+</sup> reagent ion switching chemical ionization mass spectrometer for the detection of reduced and oxygenated gas-phase organic compounds |
title_full_unstemmed | Deployment and evaluation of an NH<sub>4</sub><sup>+</sup>∕ H<sub>3</sub>O<sup>+</sup> reagent ion switching chemical ionization mass spectrometer for the detection of reduced and oxygenated gas-phase organic compounds |
title_short | Deployment and evaluation of an NH<sub>4</sub><sup>+</sup>∕ H<sub>3</sub>O<sup>+</sup> reagent ion switching chemical ionization mass spectrometer for the detection of reduced and oxygenated gas-phase organic compounds |
title_sort | deployment and evaluation of an nh sub 4 sub sup sup thinsp h sub 3 sub o sup sup reagent ion switching chemical ionization mass spectrometer for the detection of reduced and oxygenated gas phase organic compounds |
url | https://amt.copernicus.org/articles/18/17/2025/amt-18-17-2025.pdf |
work_keys_str_mv | AT clzang deploymentandevaluationofannhsub4subsupsupthinsphsub3subosupsupreagentionswitchingchemicalionizationmassspectrometerforthedetectionofreducedandoxygenatedgasphaseorganiccompounds AT mdwillis deploymentandevaluationofannhsub4subsupsupthinsphsub3subosupsupreagentionswitchingchemicalionizationmassspectrometerforthedetectionofreducedandoxygenatedgasphaseorganiccompounds |