Deployment and evaluation of an NH<sub>4</sub><sup>+</sup>∕&thinsp;H<sub>3</sub>O<sup>+</sup> reagent ion switching chemical ionization mass spectrometer for the detection of reduced and oxygenated gas-phase organic compounds

<p>Reactive organic carbon (ROC) is diverse in its speciation, functionalization, and volatility, with varying implications for ozone production and secondary organic aerosol formation and growth. Chemical ionization mass spectrometry (CIMS) approaches can provide in situ ROC observations, and...

Full description

Saved in:
Bibliographic Details
Main Authors: C. L. Zang, M. D. Willis
Format: Article
Language:English
Published: Copernicus Publications 2025-01-01
Series:Atmospheric Measurement Techniques
Online Access:https://amt.copernicus.org/articles/18/17/2025/amt-18-17-2025.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841557116315238400
author C. L. Zang
M. D. Willis
author_facet C. L. Zang
M. D. Willis
author_sort C. L. Zang
collection DOAJ
description <p>Reactive organic carbon (ROC) is diverse in its speciation, functionalization, and volatility, with varying implications for ozone production and secondary organic aerosol formation and growth. Chemical ionization mass spectrometry (CIMS) approaches can provide in situ ROC observations, and the CIMS reagent ion controls the detectable ROC species. To expand the range of detectable ROC, we describe a method for switching between the reagent ions <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="3226c502fdca30fe88bf9305df4b3716"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-18-17-2025-ie00004.svg" width="24pt" height="15pt" src="amt-18-17-2025-ie00004.png"/></svg:svg></span></span> and <span class="inline-formula">H<sub>3</sub>O<sup>+</sup></span> in a Vocus chemical ionization time-of-flight mass spectrometer (Vocus-CI-ToFMS). We describe optimization of ion–molecule reactor conditions for both reagent ions, at the same temperature, and compare the ability of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="9641cdd414b305565815b5b604dabf23"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-18-17-2025-ie00005.svg" width="24pt" height="15pt" src="amt-18-17-2025-ie00005.png"/></svg:svg></span></span> and <span class="inline-formula">H<sub>3</sub>O<sup>+</sup></span> to detect a variety of volatile organic compounds (VOCs) and semi-volatile and intermediate-volatility organic compounds (SVOCs and IVOCs), including oxygenates and organic sulfur compounds. Sensitivities are comparable to other similar instruments (up to <span class="inline-formula">∼</span>5 <span class="inline-formula">counts</span> <span class="inline-formula">s<sup>−1</sup></span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><msubsup><mi mathvariant="normal">ppt</mi><mi mathvariant="normal">v</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="27pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="03e69d0b8a5da11c6fbc4c8c60f3b361"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-18-17-2025-ie00006.svg" width="27pt" height="16pt" src="amt-18-17-2025-ie00006.png"/></svg:svg></span></span>), with detection limits on the order of 1–10 s of <span class="inline-formula">ppt<sub>v</sub></span> (1 <span class="inline-formula">s</span> integration time). We report a method for characterizing and filtering periods of hysteresis following each reagent ion switch and compare use of reagent ions, persistent ambient ions, and a deuterated internal standard for diagnosing this hysteresis. We deploy <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup><mo>/</mo><msub><mi mathvariant="normal">H</mi><mn mathvariant="normal">3</mn></msub><msup><mi mathvariant="normal">O</mi><mo>+</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="57pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="76eebc6c86e1f2961d607ea8607c9e30"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-18-17-2025-ie00007.svg" width="57pt" height="15pt" src="amt-18-17-2025-ie00007.png"/></svg:svg></span></span> reagent ion switching in a rural pine forest in central Colorado, US, and use our ambient measurements to compare the capabilities of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="7b888eb222795ca6a6dd2ceb535b59a0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-18-17-2025-ie00008.svg" width="24pt" height="15pt" src="amt-18-17-2025-ie00008.png"/></svg:svg></span></span> and <span class="inline-formula">H<sub>3</sub>O<sup>+</sup></span> in the same instrument, without interferences from variation in instrument and inlet designs. We find that <span class="inline-formula">H<sub>3</sub>O<sup>+</sup></span> optimally detects reduced ROC species with high volatility, while <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M21" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="fc7f721ac75f3b099ec2891c91941f4b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-18-17-2025-ie00009.svg" width="24pt" height="15pt" src="amt-18-17-2025-ie00009.png"/></svg:svg></span></span> improves detection of functionalized ROC compounds, including organic nitrates and oxygenated SVOCs and IVOCs that are readily fragmented by <span class="inline-formula">H<sub>3</sub>O<sup>+</sup></span>.</p>
format Article
id doaj-art-f6d45dcfb5d0427bb7a1c2528d6555f4
institution Kabale University
issn 1867-1381
1867-8548
language English
publishDate 2025-01-01
publisher Copernicus Publications
record_format Article
series Atmospheric Measurement Techniques
spelling doaj-art-f6d45dcfb5d0427bb7a1c2528d6555f42025-01-06T18:24:12ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482025-01-0118173510.5194/amt-18-17-2025Deployment and evaluation of an NH<sub>4</sub><sup>+</sup>∕&thinsp;H<sub>3</sub>O<sup>+</sup> reagent ion switching chemical ionization mass spectrometer for the detection of reduced and oxygenated gas-phase organic compoundsC. L. Zang0M. D. Willis1Department of Chemistry, Colorado State University, Fort Collins, CO, USADepartment of Chemistry, Colorado State University, Fort Collins, CO, USA<p>Reactive organic carbon (ROC) is diverse in its speciation, functionalization, and volatility, with varying implications for ozone production and secondary organic aerosol formation and growth. Chemical ionization mass spectrometry (CIMS) approaches can provide in situ ROC observations, and the CIMS reagent ion controls the detectable ROC species. To expand the range of detectable ROC, we describe a method for switching between the reagent ions <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="3226c502fdca30fe88bf9305df4b3716"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-18-17-2025-ie00004.svg" width="24pt" height="15pt" src="amt-18-17-2025-ie00004.png"/></svg:svg></span></span> and <span class="inline-formula">H<sub>3</sub>O<sup>+</sup></span> in a Vocus chemical ionization time-of-flight mass spectrometer (Vocus-CI-ToFMS). We describe optimization of ion–molecule reactor conditions for both reagent ions, at the same temperature, and compare the ability of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="9641cdd414b305565815b5b604dabf23"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-18-17-2025-ie00005.svg" width="24pt" height="15pt" src="amt-18-17-2025-ie00005.png"/></svg:svg></span></span> and <span class="inline-formula">H<sub>3</sub>O<sup>+</sup></span> to detect a variety of volatile organic compounds (VOCs) and semi-volatile and intermediate-volatility organic compounds (SVOCs and IVOCs), including oxygenates and organic sulfur compounds. Sensitivities are comparable to other similar instruments (up to <span class="inline-formula">∼</span>5 <span class="inline-formula">counts</span> <span class="inline-formula">s<sup>−1</sup></span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><msubsup><mi mathvariant="normal">ppt</mi><mi mathvariant="normal">v</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="27pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="03e69d0b8a5da11c6fbc4c8c60f3b361"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-18-17-2025-ie00006.svg" width="27pt" height="16pt" src="amt-18-17-2025-ie00006.png"/></svg:svg></span></span>), with detection limits on the order of 1–10 s of <span class="inline-formula">ppt<sub>v</sub></span> (1 <span class="inline-formula">s</span> integration time). We report a method for characterizing and filtering periods of hysteresis following each reagent ion switch and compare use of reagent ions, persistent ambient ions, and a deuterated internal standard for diagnosing this hysteresis. We deploy <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup><mo>/</mo><msub><mi mathvariant="normal">H</mi><mn mathvariant="normal">3</mn></msub><msup><mi mathvariant="normal">O</mi><mo>+</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="57pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="76eebc6c86e1f2961d607ea8607c9e30"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-18-17-2025-ie00007.svg" width="57pt" height="15pt" src="amt-18-17-2025-ie00007.png"/></svg:svg></span></span> reagent ion switching in a rural pine forest in central Colorado, US, and use our ambient measurements to compare the capabilities of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="7b888eb222795ca6a6dd2ceb535b59a0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-18-17-2025-ie00008.svg" width="24pt" height="15pt" src="amt-18-17-2025-ie00008.png"/></svg:svg></span></span> and <span class="inline-formula">H<sub>3</sub>O<sup>+</sup></span> in the same instrument, without interferences from variation in instrument and inlet designs. We find that <span class="inline-formula">H<sub>3</sub>O<sup>+</sup></span> optimally detects reduced ROC species with high volatility, while <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M21" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="fc7f721ac75f3b099ec2891c91941f4b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-18-17-2025-ie00009.svg" width="24pt" height="15pt" src="amt-18-17-2025-ie00009.png"/></svg:svg></span></span> improves detection of functionalized ROC compounds, including organic nitrates and oxygenated SVOCs and IVOCs that are readily fragmented by <span class="inline-formula">H<sub>3</sub>O<sup>+</sup></span>.</p>https://amt.copernicus.org/articles/18/17/2025/amt-18-17-2025.pdf
spellingShingle C. L. Zang
M. D. Willis
Deployment and evaluation of an NH<sub>4</sub><sup>+</sup>∕&thinsp;H<sub>3</sub>O<sup>+</sup> reagent ion switching chemical ionization mass spectrometer for the detection of reduced and oxygenated gas-phase organic compounds
Atmospheric Measurement Techniques
title Deployment and evaluation of an NH<sub>4</sub><sup>+</sup>∕&thinsp;H<sub>3</sub>O<sup>+</sup> reagent ion switching chemical ionization mass spectrometer for the detection of reduced and oxygenated gas-phase organic compounds
title_full Deployment and evaluation of an NH<sub>4</sub><sup>+</sup>∕&thinsp;H<sub>3</sub>O<sup>+</sup> reagent ion switching chemical ionization mass spectrometer for the detection of reduced and oxygenated gas-phase organic compounds
title_fullStr Deployment and evaluation of an NH<sub>4</sub><sup>+</sup>∕&thinsp;H<sub>3</sub>O<sup>+</sup> reagent ion switching chemical ionization mass spectrometer for the detection of reduced and oxygenated gas-phase organic compounds
title_full_unstemmed Deployment and evaluation of an NH<sub>4</sub><sup>+</sup>∕&thinsp;H<sub>3</sub>O<sup>+</sup> reagent ion switching chemical ionization mass spectrometer for the detection of reduced and oxygenated gas-phase organic compounds
title_short Deployment and evaluation of an NH<sub>4</sub><sup>+</sup>∕&thinsp;H<sub>3</sub>O<sup>+</sup> reagent ion switching chemical ionization mass spectrometer for the detection of reduced and oxygenated gas-phase organic compounds
title_sort deployment and evaluation of an nh sub 4 sub sup sup thinsp h sub 3 sub o sup sup reagent ion switching chemical ionization mass spectrometer for the detection of reduced and oxygenated gas phase organic compounds
url https://amt.copernicus.org/articles/18/17/2025/amt-18-17-2025.pdf
work_keys_str_mv AT clzang deploymentandevaluationofannhsub4subsupsupthinsphsub3subosupsupreagentionswitchingchemicalionizationmassspectrometerforthedetectionofreducedandoxygenatedgasphaseorganiccompounds
AT mdwillis deploymentandevaluationofannhsub4subsupsupthinsphsub3subosupsupreagentionswitchingchemicalionizationmassspectrometerforthedetectionofreducedandoxygenatedgasphaseorganiccompounds