Exponential Synchronization of Chaotic Xian System Using Linear Feedback Control

In this paper, a new linear feedback controller for synchronization of two identical chaotic systems in a master-slave configuration is presented. This controller requires knowing a priori Lipschitz constant of the nonlinear function of the chaotic system on its attractor. The controller development...

Full description

Saved in:
Bibliographic Details
Main Authors: J. Humberto Pérez-Cruz, Pedro A. Tamayo-Meza, Maricela Figueroa, Ramón Silva-Ortigoza, Mario Ponce-Silva, R. Rivera-Blas, Mario Aldape-Pérez
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2019/4706491
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832560425710911488
author J. Humberto Pérez-Cruz
Pedro A. Tamayo-Meza
Maricela Figueroa
Ramón Silva-Ortigoza
Mario Ponce-Silva
R. Rivera-Blas
Mario Aldape-Pérez
author_facet J. Humberto Pérez-Cruz
Pedro A. Tamayo-Meza
Maricela Figueroa
Ramón Silva-Ortigoza
Mario Ponce-Silva
R. Rivera-Blas
Mario Aldape-Pérez
author_sort J. Humberto Pérez-Cruz
collection DOAJ
description In this paper, a new linear feedback controller for synchronization of two identical chaotic systems in a master-slave configuration is presented. This controller requires knowing a priori Lipschitz constant of the nonlinear function of the chaotic system on its attractor. The controller development is based on an algebraic Riccati equation. If the gain matrix and the matrices of Riccati equation are selected in such a way that a unique positive definite solution is obtained for this equation, then, with respect to previous works, a stronger result can be guaranteed here: the exponential convergence to zero of the synchronization error. Additionally, the nonideal case is also studied, that is, when unmodeled dynamics and/or disturbances are present in both master system and slave system. On this new condition, the synchronization error does not converge to zero anymore. However, it is still possible to guarantee the exponential convergence to a bounded zone. Numerical simulation confirms the satisfactory performance of the suggested approach.
format Article
id doaj-art-f5d75b4987c248b7b251b1a6c612f205
institution Kabale University
issn 1076-2787
1099-0526
language English
publishDate 2019-01-01
publisher Wiley
record_format Article
series Complexity
spelling doaj-art-f5d75b4987c248b7b251b1a6c612f2052025-02-03T01:27:42ZengWileyComplexity1076-27871099-05262019-01-01201910.1155/2019/47064914706491Exponential Synchronization of Chaotic Xian System Using Linear Feedback ControlJ. Humberto Pérez-Cruz0Pedro A. Tamayo-Meza1Maricela Figueroa2Ramón Silva-Ortigoza3Mario Ponce-Silva4R. Rivera-Blas5Mario Aldape-Pérez6Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Azcapotzalco, Instituto Politécnico Nacional, Ciudad de México 02250, MexicoSección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Azcapotzalco, Instituto Politécnico Nacional, Ciudad de México 02250, MexicoSección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Azcapotzalco, Instituto Politécnico Nacional, Ciudad de México 02250, MexicoÁrea de Mecatrónica, Centro de Innovación y Desarrollo Tecnológico en Cómputo, Instituto Politécnico Nacional, Ciudad de México 07700, MexicoDepartamento de Ingeniería Electrónica, Tecnológico Nacional de México, CENIDET, Cuernavaca 62490, MexicoÁrea de Mecatrónica, Centro de Innovación y Desarrollo Tecnológico en Cómputo, Instituto Politécnico Nacional, Ciudad de México 07700, MexicoÁrea de Mecatrónica, Centro de Innovación y Desarrollo Tecnológico en Cómputo, Instituto Politécnico Nacional, Ciudad de México 07700, MexicoIn this paper, a new linear feedback controller for synchronization of two identical chaotic systems in a master-slave configuration is presented. This controller requires knowing a priori Lipschitz constant of the nonlinear function of the chaotic system on its attractor. The controller development is based on an algebraic Riccati equation. If the gain matrix and the matrices of Riccati equation are selected in such a way that a unique positive definite solution is obtained for this equation, then, with respect to previous works, a stronger result can be guaranteed here: the exponential convergence to zero of the synchronization error. Additionally, the nonideal case is also studied, that is, when unmodeled dynamics and/or disturbances are present in both master system and slave system. On this new condition, the synchronization error does not converge to zero anymore. However, it is still possible to guarantee the exponential convergence to a bounded zone. Numerical simulation confirms the satisfactory performance of the suggested approach.http://dx.doi.org/10.1155/2019/4706491
spellingShingle J. Humberto Pérez-Cruz
Pedro A. Tamayo-Meza
Maricela Figueroa
Ramón Silva-Ortigoza
Mario Ponce-Silva
R. Rivera-Blas
Mario Aldape-Pérez
Exponential Synchronization of Chaotic Xian System Using Linear Feedback Control
Complexity
title Exponential Synchronization of Chaotic Xian System Using Linear Feedback Control
title_full Exponential Synchronization of Chaotic Xian System Using Linear Feedback Control
title_fullStr Exponential Synchronization of Chaotic Xian System Using Linear Feedback Control
title_full_unstemmed Exponential Synchronization of Chaotic Xian System Using Linear Feedback Control
title_short Exponential Synchronization of Chaotic Xian System Using Linear Feedback Control
title_sort exponential synchronization of chaotic xian system using linear feedback control
url http://dx.doi.org/10.1155/2019/4706491
work_keys_str_mv AT jhumbertoperezcruz exponentialsynchronizationofchaoticxiansystemusinglinearfeedbackcontrol
AT pedroatamayomeza exponentialsynchronizationofchaoticxiansystemusinglinearfeedbackcontrol
AT maricelafigueroa exponentialsynchronizationofchaoticxiansystemusinglinearfeedbackcontrol
AT ramonsilvaortigoza exponentialsynchronizationofchaoticxiansystemusinglinearfeedbackcontrol
AT marioponcesilva exponentialsynchronizationofchaoticxiansystemusinglinearfeedbackcontrol
AT rriverablas exponentialsynchronizationofchaoticxiansystemusinglinearfeedbackcontrol
AT marioaldapeperez exponentialsynchronizationofchaoticxiansystemusinglinearfeedbackcontrol