Causal discovery and fault diagnosis based on mixed data types for system reliability modeling

Abstract Causal relationships play an irreplaceable role in revealing the mechanisms of phenomena and guiding intervention actions. However, due to limitations in existing frameworks regarding model representations and learning algorithms, only a few studies have explored causal discovery on non-Euc...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaokang Wang, Siqi Jiang, Xinghan Li, Mozhu Wang
Format: Article
Language:English
Published: Springer 2025-01-01
Series:Complex & Intelligent Systems
Subjects:
Online Access:https://doi.org/10.1007/s40747-024-01740-5
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Causal relationships play an irreplaceable role in revealing the mechanisms of phenomena and guiding intervention actions. However, due to limitations in existing frameworks regarding model representations and learning algorithms, only a few studies have explored causal discovery on non-Euclidean data. In this paper, we address the issue by proposing a causal mapping process based on coordinate representations for heterogeneous non-Euclidean data. We propose a data generation mechanism between the parent nodes and the child nodes and create a causal mechanism based on multi-dimensional tensor regression. Furthermore, within the aforementioned theoretical framework, we propose a two-stage causal discovery approach based on regularized generalized canonical correlation analysis. Using the discrete representation in the shared projection direction, causal relationships between heterogeneous non-Euclidean variables can be discovered more accurately. Finally, empirical research is conducted on real-world industrial sensor data, which demonstrates the effectiveness of the proposed method for discovering causal relationships in heterogeneous non-Euclidean data.
ISSN:2199-4536
2198-6053