An interleaved physics-based deep-learning framework as a new cycle jumping approach for microstructurally small fatigue crack growth simulations
Abstract Conventional fracture mechanics asserts that the relevant physics governing small crack growth occurs near the crack front. However, for fatigue, computing these physics for each crack-growth increment over the entire microstructurally small crack regime is computationally intractable. Prop...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-08-01
|
| Series: | npj Computational Materials |
| Online Access: | https://doi.org/10.1038/s41524-025-01741-z |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|