Seismic Random Noise Attenuation via Low-Rank Tensor Network
Seismic data are easily contaminated by random noise, impairing subsequent geological interpretation tasks. Existing denoising methods like low-rank approximation (LRA) and deep learning (DL) show promising denoising capabilities but still have limitations; for instance, LRA performance is parameter...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/7/3453 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|