Detection and Localization of False Data Injection Attacks in Smart Grids Applying an Interpretable Fuzzy Genetic Machine Learning/Data Mining Approach
In this paper, we consider the problem of accurate, transparent, and interpretable detection, as well as the localization of false data injection attacks (FDIAs) in smart grids. In order to address that problem, we employ our knowledge discovery machine learning/data mining (ML/DM) approach—implemen...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Energies |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1996-1073/18/7/1568 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|