A chemical approach facilitates CRISPRa-only human iPSC generation and minimizes the number of targeted loci required

Aim: We explored the generation of human induced pluripotent stem cells (iPSCs) solely through the transcriptional activation of endogenous genes by CRISPR activation (CRISPRa). Methods: Minimal number of human-specific guide RNAs targeting a limited set of loci were used with a unique cocktail of s...

Full description

Saved in:
Bibliographic Details
Main Authors: Ramzey Abujarour, Jason Dinella, Mochtar Pribadi, Lauren K Fong, Matthew Denholtz, Alma Gutierrez, Matt Haynes, Enaaya Mahmood, Tom T Lee, Sheng Ding, Bahram Valamehr
Format: Article
Language:English
Published: Taylor & Francis Group 2024-12-01
Series:Future Science OA
Subjects:
Online Access:https://www.tandfonline.com/doi/10.2144/fsoa-2023-0257
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aim: We explored the generation of human induced pluripotent stem cells (iPSCs) solely through the transcriptional activation of endogenous genes by CRISPR activation (CRISPRa). Methods: Minimal number of human-specific guide RNAs targeting a limited set of loci were used with a unique cocktail of small molecules (CRISPRa-SM). Results: iPSC clones were efficiently generated by CRISPRa-SM, expressed general and naive iPSC markers and clustered with high-quality iPSCs generated using conventional reprogramming methods. iPSCs showed genomic stability and robust pluripotent potential as assessed by in vitro and in vivo. Conclusion: CRISPRa-SM-generated human iPSCs by direct and multiplexed loci activation facilitating a unique and potentially safer cellular reprogramming process to aid potential applications in cellular therapy and regenerative medicine.
ISSN:2056-5623