Exploring the tribo-mechanical performance of Ti-Mo-Zr-Ta-Sn alloys with a focus on their suitability for biomedical use

Titanium alloys are poised to become increasingly prevalent as implant materials in medical applications. When compared to other implant materials, Ti alloys are considered superior in terms of corrosion resistance, specific strength and biocompatibility. As such, there is a growing interest in furt...

Full description

Saved in:
Bibliographic Details
Main Authors: Ahmed Fouly, Hassan Alshehri, Ibrahim A. Alnaser, El-Sayed M. Sherif
Format: Article
Language:English
Published: Elsevier 2025-01-01
Series:Engineering Science and Technology, an International Journal
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2215098624003197
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Titanium alloys are poised to become increasingly prevalent as implant materials in medical applications. When compared to other implant materials, Ti alloys are considered superior in terms of corrosion resistance, specific strength and biocompatibility. As such, there is a growing interest in further exploring the properties of titanium alloys in the field of implants, orthopedic, and dental prostheses. This paper presents a comprehensive investigation into the development and characterization of Ti alloys for biomedical applications. The study focuses on the incorporation of various alloying elements, including Zr, Sn, Mo, and Ta, to enhance the tribo-mechanical performance of the alloys. The impact of varying Ta and Mo content on the performance of Ti alloys was investigated, while maintaining constant levels of Zr and Sn. The fabrication process involves advanced sintering techniques, and the resulting alloys are evaluated for their density, mechanical characteristics, and wear behavior. The load-carrying capacity of the alloys in a realistic scenario, a hip joint, was assessed by employing a finite element analysis. The results demonstrate that the addition of Ta improves the mechanical properties and wear resistance of the alloys, while reducing friction coefficients. Although Ta markedly improves mechanical strength and wear resistance, Mo exhibited a contrary impact. The SEM analysis of the tested surfaces demonstrated that the addition of Ta had a good impact on the wear mechanism.
ISSN:2215-0986