A domain free of the zeros of the partial theta function
The partial theta function is the sum of the series \medskip\centerline{$\displaystyle\theta (q,x):=\sum\nolimits _{j=0}^{\infty}q^{j(j+1)/2}x^j$,} \medskip\noi where $q$ is a real or complex parameter ($|q|<1$). Its name is due to similarities with the formula for the Jacobi theta function $\...
Saved in:
| Main Author: | V. Kostov |
|---|---|
| Format: | Article |
| Language: | deu |
| Published: |
Ivan Franko National University of Lviv
2023-01-01
|
| Series: | Математичні Студії |
| Subjects: | |
| Online Access: | http://matstud.org.ua/ojs/index.php/matstud/article/view/367 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Classical special functions of matrix arguments
by: Dmytro Shutiak, et al.
Published: (2024-12-01) -
A representation of Jacobi functions
by: E. Y. Deeba, et al.
Published: (1985-01-01) -
On relationships between q-product identities and combinatorial partition identities
by: Chaudhary M.P., et al.
Published: (2020-01-01) -
Simultaneous approximation of modulus and values of Jacobi elliptic functions (in Ukrainian)
by: Ya. M. Kholyavka
Published: (2013-04-01) -
ON GENERALIZED EIGHTH ORDER MOCK THETA FUNCTIONS
by: Pramod Kumar Rawat
Published: (2020-07-01)