A domain free of the zeros of the partial theta function
The partial theta function is the sum of the series \medskip\centerline{$\displaystyle\theta (q,x):=\sum\nolimits _{j=0}^{\infty}q^{j(j+1)/2}x^j$,} \medskip\noi where $q$ is a real or complex parameter ($|q|<1$). Its name is due to similarities with the formula for the Jacobi theta function $\...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | deu |
| Published: |
Ivan Franko National University of Lviv
2023-01-01
|
| Series: | Математичні Студії |
| Subjects: | |
| Online Access: | http://matstud.org.ua/ojs/index.php/matstud/article/view/367 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|