Skeletal muscle-derived musclin attenuates glycolysis, oxidative stress, and pulmonary hypertension through the NPR3/AKT/mTORC1 pathway

Exercise ameliorates pulmonary hypertension (PH) progression. However, the underlying mechanisms are largely unclear. Musclin is an exercise-responsive myokine that exerts protective effects on cardiovascular diseases. The current study aims to explore the role of musclin in the development of PH. A...

Full description

Saved in:
Bibliographic Details
Main Authors: Sun Xiongshan, Wang Jia, Xiao Yi, Li De, Wang Qiang, Guo Wei, Yang Yongjian
Format: Article
Language:English
Published: China Science Publishing & Media Ltd. 2024-12-01
Series:Acta Biochimica et Biophysica Sinica
Subjects:
Online Access:https://www.sciengine.com/doi/10.3724/abbs.2024214
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Exercise ameliorates pulmonary hypertension (PH) progression. However, the underlying mechanisms are largely unclear. Musclin is an exercise-responsive myokine that exerts protective effects on cardiovascular diseases. The current study aims to explore the role of musclin in the development of PH. A monocrotaline (MCT)-induced mouse PH model is established. Adeno-associated virus serotype 6 (AAV6)-mediated gene transfer is used to induce musclin overexpression in skeletal muscle. Ultrasound and morphological analyses are utilized to assess the severity of PH. Cell viability assay, Ki-67 immunofluorescence staining, wound healing assay, and transwell assay are used to evaluate the proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs). We find that the musclin levels in both plasma and skeletal muscle are decreased in MCT-treated mice. The external expression of musclin in skeletal muscle ameliorates pulmonary arterial remodeling and right ventricular dysfunction. In vitro, musclin treatment suppresses hypoxia-induced glycolysis, oxidative stress, proliferation, and migration. Further experiments reveal that musclin inhibits mechanistic target of rapamycin complex 1 (mTORC1) activity in hypoxia-stimulated PASMCs and pulmonary arteries of MCT-treated mice. Reactivating mTORC1 abolishes the protective role of musclin against PH. Additionally, musclin enhances its interaction with natriuretic peptide receptor 3 (NPR3) in PASMCs. Silencing of NPR3 reverses the inhibitory effects of musclin on AKT phosphorylation, mTORC1 activity, glycolysis, oxidative stress, proliferation, and migration in hypoxia-challenged PASMCs. In conclusion, our study highlights the inhibitory role of musclin in the proliferation and migration of PASMCs and PH progression, thereby providing a novel potent therapeutic strategy for treating PH and partly clarifying the mechanism of exercise-mediated protection against PH.
ISSN:1672-9145