An algorithm of blood typing using serological plate images

This paper describes an in vitro medical express diagnostic system designed to determine the blood group by analyzing the agglutination reaction (gluing of erythrocytes). The medical staff only needs to take a blood sample, put it on a serological plate, placing it in a special scanner for the blood...

Full description

Saved in:
Bibliographic Details
Main Authors: S.A. Korchagin, E.E. Zaychenkova, D.A. Sharapov, E.I. Ershov, Y.V. Butorin, Y.Y. Vengerov
Format: Article
Language:English
Published: Samara National Research University 2023-12-01
Series:Компьютерная оптика
Subjects:
Online Access:https://www.computeroptics.ru/eng/KO/Annot/KO47-6/470613e.html
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832580507094745088
author S.A. Korchagin
E.E. Zaychenkova
D.A. Sharapov
E.I. Ershov
Y.V. Butorin
Y.Y. Vengerov
author_facet S.A. Korchagin
E.E. Zaychenkova
D.A. Sharapov
E.I. Ershov
Y.V. Butorin
Y.Y. Vengerov
author_sort S.A. Korchagin
collection DOAJ
description This paper describes an in vitro medical express diagnostic system designed to determine the blood group by analyzing the agglutination reaction (gluing of erythrocytes). The medical staff only needs to take a blood sample, put it on a serological plate, placing it in a special scanner for the blood group to be automatically determined. Data digitizing and machine-assisted plate identification allows two critical tasks to be addressed at once: storing the analysis results and controlling the human factor. The proposed recognition algorithm allows the alveolus boundaries to be accurately determined and the agglutination degree to be evaluated using a lightweight convolutional neural network. A unique dataset was collected with the independent assessment of agglutination degree conducted by medical experts. The agglutination estimation accuracy on the collected dataset of 3231 alveole was comparable to the accuracy of an average medical expert and equal to 0.98.
format Article
id doaj-art-ec2a08e67191484185f0f06b7267ff9a
institution Kabale University
issn 0134-2452
2412-6179
language English
publishDate 2023-12-01
publisher Samara National Research University
record_format Article
series Компьютерная оптика
spelling doaj-art-ec2a08e67191484185f0f06b7267ff9a2025-01-30T10:55:17ZengSamara National Research UniversityКомпьютерная оптика0134-24522412-61792023-12-0147695896710.18287/2412-6179-CO-1339An algorithm of blood typing using serological plate imagesS.A. Korchagin0E.E. Zaychenkova1D.A. Sharapov2E.I. Ershov3Y.V. Butorin4Y.Y. Vengerov5The Institute for Information Transmission Problems; Lomonosov Moscow State UniversityThe Institute for Information Transmission Problems; The Moscow Institute of Physics and TechnologyThe Institute for Information Transmission Problems; The Moscow Institute of Physics and TechnologyThe Institute for Information Transmission Problems; The Moscow Institute of Physics and TechnologyThe Institute for Information Transmission Problems; Lomonosov Moscow State University; LLC «SYNTECO»The Institute for Information Transmission Problems; Lomonosov Moscow State University; LLC «SYNTECO»This paper describes an in vitro medical express diagnostic system designed to determine the blood group by analyzing the agglutination reaction (gluing of erythrocytes). The medical staff only needs to take a blood sample, put it on a serological plate, placing it in a special scanner for the blood group to be automatically determined. Data digitizing and machine-assisted plate identification allows two critical tasks to be addressed at once: storing the analysis results and controlling the human factor. The proposed recognition algorithm allows the alveolus boundaries to be accurately determined and the agglutination degree to be evaluated using a lightweight convolutional neural network. A unique dataset was collected with the independent assessment of agglutination degree conducted by medical experts. The agglutination estimation accuracy on the collected dataset of 3231 alveole was comparable to the accuracy of an average medical expert and equal to 0.98.https://www.computeroptics.ru/eng/KO/Annot/KO47-6/470613e.htmlagglutinationblood typingclassificationhough transformdeep learning
spellingShingle S.A. Korchagin
E.E. Zaychenkova
D.A. Sharapov
E.I. Ershov
Y.V. Butorin
Y.Y. Vengerov
An algorithm of blood typing using serological plate images
Компьютерная оптика
agglutination
blood typing
classification
hough transform
deep learning
title An algorithm of blood typing using serological plate images
title_full An algorithm of blood typing using serological plate images
title_fullStr An algorithm of blood typing using serological plate images
title_full_unstemmed An algorithm of blood typing using serological plate images
title_short An algorithm of blood typing using serological plate images
title_sort algorithm of blood typing using serological plate images
topic agglutination
blood typing
classification
hough transform
deep learning
url https://www.computeroptics.ru/eng/KO/Annot/KO47-6/470613e.html
work_keys_str_mv AT sakorchagin analgorithmofbloodtypingusingserologicalplateimages
AT eezaychenkova analgorithmofbloodtypingusingserologicalplateimages
AT dasharapov analgorithmofbloodtypingusingserologicalplateimages
AT eiershov analgorithmofbloodtypingusingserologicalplateimages
AT yvbutorin analgorithmofbloodtypingusingserologicalplateimages
AT yyvengerov analgorithmofbloodtypingusingserologicalplateimages
AT sakorchagin algorithmofbloodtypingusingserologicalplateimages
AT eezaychenkova algorithmofbloodtypingusingserologicalplateimages
AT dasharapov algorithmofbloodtypingusingserologicalplateimages
AT eiershov algorithmofbloodtypingusingserologicalplateimages
AT yvbutorin algorithmofbloodtypingusingserologicalplateimages
AT yyvengerov algorithmofbloodtypingusingserologicalplateimages