Iterative Sparse Identification of Nonlinear Dynamics
In order to extract governing equations from time-series data, various approaches are proposed. Among those, sparse identification of nonlinear dynamics (SINDy) stands out as a successful method capable of modeling governing equations with a minimal number of terms, utilizing the principles of compr...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2024-01-01
|
Series: | IEEE Open Journal of Signal Processing |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10750024/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|