Energy Transfer Catalysis Enabled 2,2,2‐Trifluoroethoxy‐Amination of Olefins

A thioxanthone‐catalyzed 2,2,2‐trifluoroethoxyamination of olefins is developed via the formation of the corresponding alkoxy and iminyl radicals using unprecedented, easily prepared, and bench‐stable oxime ethers as bifunctional reagents. To bypass possible side reactions (1,2‐Hydrogen Atom Transfe...

Full description

Saved in:
Bibliographic Details
Main Authors: Floriane Doche, Thibault Gallavardin, Thomas Poisson, Tatiana Besset
Format: Article
Language:English
Published: Wiley-VCH 2025-07-01
Series:ChemistryEurope
Subjects:
Online Access:https://doi.org/10.1002/ceur.202500041
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849424147807993856
author Floriane Doche
Thibault Gallavardin
Thomas Poisson
Tatiana Besset
author_facet Floriane Doche
Thibault Gallavardin
Thomas Poisson
Tatiana Besset
author_sort Floriane Doche
collection DOAJ
description A thioxanthone‐catalyzed 2,2,2‐trifluoroethoxyamination of olefins is developed via the formation of the corresponding alkoxy and iminyl radicals using unprecedented, easily prepared, and bench‐stable oxime ethers as bifunctional reagents. To bypass possible side reactions (1,2‐Hydrogen Atom Transfer (HAT), H‐abstraction, and β‐scission), the high reactivity of the alkoxy radical is fine‐tuned to promote the selective and challenging formation of a COCH2CF3 bond. This reaction, involving a triplet energy transfer process, allows the concomitant formation of a CN and COAlk bond, so far uncharted, using bifunctional oxime ether reagents. Hence, the difunctionalization of a myriad of electron‐rich alkenes selectively afforded the anti‐Markovnikov products with a large functional group tolerance (44 examples, up to 77% yield), offering a straightforward and complementary regioselectivity compared to the existing approaches for the difunctionalization of alkenes with 2,2,2‐trifluoroethanol. Post‐functionalization reactions and mechanistic investigations provided key insights into the reaction mechanism of this transformation.
format Article
id doaj-art-ea995dfdfab448ef9c8197b8aeeef8a0
institution Kabale University
issn 2751-4765
language English
publishDate 2025-07-01
publisher Wiley-VCH
record_format Article
series ChemistryEurope
spelling doaj-art-ea995dfdfab448ef9c8197b8aeeef8a02025-08-20T03:30:19ZengWiley-VCHChemistryEurope2751-47652025-07-0134n/an/a10.1002/ceur.202500041Energy Transfer Catalysis Enabled 2,2,2‐Trifluoroethoxy‐Amination of OlefinsFloriane Doche0Thibault Gallavardin1Thomas Poisson2Tatiana Besset3Institut CARMeN (UMR 6064) INSA Rouen Normandie University Rouen Normandie CNRS Normandie University F‐76000 Rouen FranceInstitut CARMeN (UMR 6064) INSA Rouen Normandie University Rouen Normandie CNRS Normandie University F‐76000 Rouen FranceInstitut CARMeN (UMR 6064) INSA Rouen Normandie University Rouen Normandie CNRS Normandie University F‐76000 Rouen FranceInstitut CARMeN (UMR 6064) INSA Rouen Normandie University Rouen Normandie CNRS Normandie University F‐76000 Rouen FranceA thioxanthone‐catalyzed 2,2,2‐trifluoroethoxyamination of olefins is developed via the formation of the corresponding alkoxy and iminyl radicals using unprecedented, easily prepared, and bench‐stable oxime ethers as bifunctional reagents. To bypass possible side reactions (1,2‐Hydrogen Atom Transfer (HAT), H‐abstraction, and β‐scission), the high reactivity of the alkoxy radical is fine‐tuned to promote the selective and challenging formation of a COCH2CF3 bond. This reaction, involving a triplet energy transfer process, allows the concomitant formation of a CN and COAlk bond, so far uncharted, using bifunctional oxime ether reagents. Hence, the difunctionalization of a myriad of electron‐rich alkenes selectively afforded the anti‐Markovnikov products with a large functional group tolerance (44 examples, up to 77% yield), offering a straightforward and complementary regioselectivity compared to the existing approaches for the difunctionalization of alkenes with 2,2,2‐trifluoroethanol. Post‐functionalization reactions and mechanistic investigations provided key insights into the reaction mechanism of this transformation.https://doi.org/10.1002/ceur.202500041alkoxy radical generationbifunctional reagentsenergy transferphotocatalysis2,2,2‐trifluoroethoxyamination reactions
spellingShingle Floriane Doche
Thibault Gallavardin
Thomas Poisson
Tatiana Besset
Energy Transfer Catalysis Enabled 2,2,2‐Trifluoroethoxy‐Amination of Olefins
ChemistryEurope
alkoxy radical generation
bifunctional reagents
energy transfer
photocatalysis
2,2,2‐trifluoroethoxyamination reactions
title Energy Transfer Catalysis Enabled 2,2,2‐Trifluoroethoxy‐Amination of Olefins
title_full Energy Transfer Catalysis Enabled 2,2,2‐Trifluoroethoxy‐Amination of Olefins
title_fullStr Energy Transfer Catalysis Enabled 2,2,2‐Trifluoroethoxy‐Amination of Olefins
title_full_unstemmed Energy Transfer Catalysis Enabled 2,2,2‐Trifluoroethoxy‐Amination of Olefins
title_short Energy Transfer Catalysis Enabled 2,2,2‐Trifluoroethoxy‐Amination of Olefins
title_sort energy transfer catalysis enabled 2 2 2 trifluoroethoxy amination of olefins
topic alkoxy radical generation
bifunctional reagents
energy transfer
photocatalysis
2,2,2‐trifluoroethoxyamination reactions
url https://doi.org/10.1002/ceur.202500041
work_keys_str_mv AT florianedoche energytransfercatalysisenabled222trifluoroethoxyaminationofolefins
AT thibaultgallavardin energytransfercatalysisenabled222trifluoroethoxyaminationofolefins
AT thomaspoisson energytransfercatalysisenabled222trifluoroethoxyaminationofolefins
AT tatianabesset energytransfercatalysisenabled222trifluoroethoxyaminationofolefins