Energy Transfer Catalysis Enabled 2,2,2‐Trifluoroethoxy‐Amination of Olefins
A thioxanthone‐catalyzed 2,2,2‐trifluoroethoxyamination of olefins is developed via the formation of the corresponding alkoxy and iminyl radicals using unprecedented, easily prepared, and bench‐stable oxime ethers as bifunctional reagents. To bypass possible side reactions (1,2‐Hydrogen Atom Transfe...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley-VCH
2025-07-01
|
| Series: | ChemistryEurope |
| Subjects: | |
| Online Access: | https://doi.org/10.1002/ceur.202500041 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849424147807993856 |
|---|---|
| author | Floriane Doche Thibault Gallavardin Thomas Poisson Tatiana Besset |
| author_facet | Floriane Doche Thibault Gallavardin Thomas Poisson Tatiana Besset |
| author_sort | Floriane Doche |
| collection | DOAJ |
| description | A thioxanthone‐catalyzed 2,2,2‐trifluoroethoxyamination of olefins is developed via the formation of the corresponding alkoxy and iminyl radicals using unprecedented, easily prepared, and bench‐stable oxime ethers as bifunctional reagents. To bypass possible side reactions (1,2‐Hydrogen Atom Transfer (HAT), H‐abstraction, and β‐scission), the high reactivity of the alkoxy radical is fine‐tuned to promote the selective and challenging formation of a COCH2CF3 bond. This reaction, involving a triplet energy transfer process, allows the concomitant formation of a CN and COAlk bond, so far uncharted, using bifunctional oxime ether reagents. Hence, the difunctionalization of a myriad of electron‐rich alkenes selectively afforded the anti‐Markovnikov products with a large functional group tolerance (44 examples, up to 77% yield), offering a straightforward and complementary regioselectivity compared to the existing approaches for the difunctionalization of alkenes with 2,2,2‐trifluoroethanol. Post‐functionalization reactions and mechanistic investigations provided key insights into the reaction mechanism of this transformation. |
| format | Article |
| id | doaj-art-ea995dfdfab448ef9c8197b8aeeef8a0 |
| institution | Kabale University |
| issn | 2751-4765 |
| language | English |
| publishDate | 2025-07-01 |
| publisher | Wiley-VCH |
| record_format | Article |
| series | ChemistryEurope |
| spelling | doaj-art-ea995dfdfab448ef9c8197b8aeeef8a02025-08-20T03:30:19ZengWiley-VCHChemistryEurope2751-47652025-07-0134n/an/a10.1002/ceur.202500041Energy Transfer Catalysis Enabled 2,2,2‐Trifluoroethoxy‐Amination of OlefinsFloriane Doche0Thibault Gallavardin1Thomas Poisson2Tatiana Besset3Institut CARMeN (UMR 6064) INSA Rouen Normandie University Rouen Normandie CNRS Normandie University F‐76000 Rouen FranceInstitut CARMeN (UMR 6064) INSA Rouen Normandie University Rouen Normandie CNRS Normandie University F‐76000 Rouen FranceInstitut CARMeN (UMR 6064) INSA Rouen Normandie University Rouen Normandie CNRS Normandie University F‐76000 Rouen FranceInstitut CARMeN (UMR 6064) INSA Rouen Normandie University Rouen Normandie CNRS Normandie University F‐76000 Rouen FranceA thioxanthone‐catalyzed 2,2,2‐trifluoroethoxyamination of olefins is developed via the formation of the corresponding alkoxy and iminyl radicals using unprecedented, easily prepared, and bench‐stable oxime ethers as bifunctional reagents. To bypass possible side reactions (1,2‐Hydrogen Atom Transfer (HAT), H‐abstraction, and β‐scission), the high reactivity of the alkoxy radical is fine‐tuned to promote the selective and challenging formation of a COCH2CF3 bond. This reaction, involving a triplet energy transfer process, allows the concomitant formation of a CN and COAlk bond, so far uncharted, using bifunctional oxime ether reagents. Hence, the difunctionalization of a myriad of electron‐rich alkenes selectively afforded the anti‐Markovnikov products with a large functional group tolerance (44 examples, up to 77% yield), offering a straightforward and complementary regioselectivity compared to the existing approaches for the difunctionalization of alkenes with 2,2,2‐trifluoroethanol. Post‐functionalization reactions and mechanistic investigations provided key insights into the reaction mechanism of this transformation.https://doi.org/10.1002/ceur.202500041alkoxy radical generationbifunctional reagentsenergy transferphotocatalysis2,2,2‐trifluoroethoxyamination reactions |
| spellingShingle | Floriane Doche Thibault Gallavardin Thomas Poisson Tatiana Besset Energy Transfer Catalysis Enabled 2,2,2‐Trifluoroethoxy‐Amination of Olefins ChemistryEurope alkoxy radical generation bifunctional reagents energy transfer photocatalysis 2,2,2‐trifluoroethoxyamination reactions |
| title | Energy Transfer Catalysis Enabled 2,2,2‐Trifluoroethoxy‐Amination of Olefins |
| title_full | Energy Transfer Catalysis Enabled 2,2,2‐Trifluoroethoxy‐Amination of Olefins |
| title_fullStr | Energy Transfer Catalysis Enabled 2,2,2‐Trifluoroethoxy‐Amination of Olefins |
| title_full_unstemmed | Energy Transfer Catalysis Enabled 2,2,2‐Trifluoroethoxy‐Amination of Olefins |
| title_short | Energy Transfer Catalysis Enabled 2,2,2‐Trifluoroethoxy‐Amination of Olefins |
| title_sort | energy transfer catalysis enabled 2 2 2 trifluoroethoxy amination of olefins |
| topic | alkoxy radical generation bifunctional reagents energy transfer photocatalysis 2,2,2‐trifluoroethoxyamination reactions |
| url | https://doi.org/10.1002/ceur.202500041 |
| work_keys_str_mv | AT florianedoche energytransfercatalysisenabled222trifluoroethoxyaminationofolefins AT thibaultgallavardin energytransfercatalysisenabled222trifluoroethoxyaminationofolefins AT thomaspoisson energytransfercatalysisenabled222trifluoroethoxyaminationofolefins AT tatianabesset energytransfercatalysisenabled222trifluoroethoxyaminationofolefins |