Fusion of Personalized Federated Learning (PFL) with Differential Privacy (DP) Learning for Diagnosis of Arrhythmia Disease.
This paper presents a novel privacy-preserving architecture, a fusion of Federated Learning with Personalized Models and Differential Privacy (FLPMDP), for diagnosing arrhythmia from 12-lead electrocardiogram (ECG) signals. The architecture supports collaborative training in decentralized healthcare...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Public Library of Science (PLoS)
2025-01-01
|
| Series: | PLoS ONE |
| Online Access: | https://doi.org/10.1371/journal.pone.0327108 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|