Differential Transcript Profiles of MHC Class Ib(Qa-1, Qa-2, and Qa-10) and Aire Genes during the Ontogeny of Thymus and Other Tissues

Qa-2 and Qa-1 are murine nonclassical MHC class I molecules involved in the modulation of immune responses by interacting with T CD8+ and NK cell inhibitory receptors. During thymic education, the Aire gene imposes the expression of thousands of tissue-related antigens in the thymic medulla, permitt...

Full description

Saved in:
Bibliographic Details
Main Authors: Breno Luiz Melo-Lima, Adriane Feijó Evangelista, Danielle Aparecida Rosa de Magalhães, Geraldo Aleixo Passos, Philippe Moreau, Eduardo Antonio Donadi
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Journal of Immunology Research
Online Access:http://dx.doi.org/10.1155/2014/159247
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Qa-2 and Qa-1 are murine nonclassical MHC class I molecules involved in the modulation of immune responses by interacting with T CD8+ and NK cell inhibitory receptors. During thymic education, the Aire gene imposes the expression of thousands of tissue-related antigens in the thymic medulla, permitting the negative selection events. Aiming to characterize the transcriptional profiles of nonclassical MHC class I genes in spatial-temporal association with the Aire expression, we evaluated the gene expression of H2-Q7(Qa-2), H2-T23(Qa-1), H2-Q10(Qa-10), and Aire during fetal and postnatal development of thymus and other tissues. In the thymus, H2-Q7(Qa-2) transcripts were detected at high levels throughout development and were positively correlated with Aire expression during fetal ages. H2-Q7(Qa-2) and H2-T23(Qa-1) showed distinct expression patterns with gradual increasing levels according to age in most tissues analyzed. H2-Q10(Qa-10) was preferentially expressed by the liver. The Aire transcriptional profile showed increased levels during the fetal period and was detectable in postnatal ages in the thymus. Overall, nonclassical MHC class I genes started to be expressed early during the ontogeny. Their levels varied according to age, tissue, and mouse strain analyzed. This differential expression may contribute to the distinct patterns of mouse susceptibility/resistance to infectious and noninfectious disorders.
ISSN:2314-8861
2314-7156