Collaborative representation based classifier with maximum correntropy criterion and locality constraint

A method which utilizes maximum correntropy criterion and locality information called collaborative representation based classifier with maximum correntropy criterion and locality constraint (CRC/MCCLC) was proposed.On the one hand, CRC/MCCLC was not only more robust to outliers than L<sub>1&l...

Full description

Saved in:
Bibliographic Details
Main Authors: Qinru YU, Guifu LU
Format: Article
Language:zho
Published: POSTS&TELECOM PRESS Co., LTD 2021-09-01
Series:智能科学与技术学报
Subjects:
Online Access:http://www.cjist.com.cn/thesisDetails#10.11959/j.issn.2096-6652.202134
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A method which utilizes maximum correntropy criterion and locality information called collaborative representation based classifier with maximum correntropy criterion and locality constraint (CRC/MCCLC) was proposed.On the one hand, CRC/MCCLC was not only more robust to outliers than L<sub>1</sub> norm but also could be computed efficiently using half-quadratic optimization technique because of the use of maximum correntropy criterion.On the other hand, CRC/MCCLC could obtain more discriminative information from the training samples and could lead to an approximately sparse representation because of the use of locality information.Extensive experimental results on some image databases demonstrate that CRC/MCCLC can achieve the state-of-the-art performance on these image databases.
ISSN:2096-6652