Bender–Knuth Billiards in Coxeter Groups

Let $(W,S)$ be a Coxeter system, and write $S=\{s_i:i\in I\}$ , where I is a finite index set. Fix a nonempty convex subset $\mathscr {L}$ of W. If W is of type A, then $\mathscr {L}$ is the set of linear extensions of a poset, and there are important Bender–Knuth involuti...

Full description

Saved in:
Bibliographic Details
Main Authors: Grant Barkley, Colin Defant, Eliot Hodges, Noah Kravitz, Mitchell Lee
Format: Article
Language:English
Published: Cambridge University Press 2025-01-01
Series:Forum of Mathematics, Sigma
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050509424001592/type/journal_article
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832589946650624000
author Grant Barkley
Colin Defant
Eliot Hodges
Noah Kravitz
Mitchell Lee
author_facet Grant Barkley
Colin Defant
Eliot Hodges
Noah Kravitz
Mitchell Lee
author_sort Grant Barkley
collection DOAJ
description Let $(W,S)$ be a Coxeter system, and write $S=\{s_i:i\in I\}$ , where I is a finite index set. Fix a nonempty convex subset $\mathscr {L}$ of W. If W is of type A, then $\mathscr {L}$ is the set of linear extensions of a poset, and there are important Bender–Knuth involutions $\mathrm {BK}_i\colon \mathscr {L}\to \mathscr {L}$ indexed by elements of I. For arbitrary W and for each $i\in I$ , we introduce an operator $\tau _i\colon W\to W$ (depending on $\mathscr {L}$ ) that we call a noninvertible Bender–Knuth toggle; this operator restricts to an involution on $\mathscr {L}$ that coincides with $\mathrm {BK}_i$ in type A. Given a Coxeter element $c=s_{i_n}\cdots s_{i_1}$ , we consider the operator $\mathrm {Pro}_c=\tau _{i_n}\cdots \tau _{i_1}$ . We say W is futuristic if for every nonempty finite convex set $\mathscr {L}$ , every Coxeter element c and every $u\in W$ , there exists an integer $K\geq 0$ such that $\mathrm {Pro}_c^K(u)\in \mathscr {L}$ . We prove that finite Coxeter groups, right-angled Coxeter groups, rank-3 Coxeter groups, affine Coxeter groups of types $\widetilde A$ and $\widetilde C$ , and Coxeter groups whose Coxeter graphs are complete are all futuristic. When W is finite, we actually prove that if $s_{i_N}\cdots s_{i_1}$ is a reduced expression for the long element of W, then $\tau _{i_N}\cdots \tau _{i_1}(W)=\mathscr {L}$ ; this allows us to determine the smallest integer $\mathrm {M}(c)$ such that $\mathrm {Pro}_c^{{\mathrm {M}}(c)}(W)=\mathscr {L}$ for all $\mathscr {L}$ . We also exhibit infinitely many non-futuristic Coxeter groups, including all irreducible affine Coxeter groups that are not of type $\widetilde A$ , $\widetilde C$ , or $\widetilde G_2$ .
format Article
id doaj-art-e649fa0bcf2c471a8bce24081f8fcc0f
institution Kabale University
issn 2050-5094
language English
publishDate 2025-01-01
publisher Cambridge University Press
record_format Article
series Forum of Mathematics, Sigma
spelling doaj-art-e649fa0bcf2c471a8bce24081f8fcc0f2025-01-24T05:20:12ZengCambridge University PressForum of Mathematics, Sigma2050-50942025-01-011310.1017/fms.2024.159Bender–Knuth Billiards in Coxeter GroupsGrant Barkley0Colin Defant1Eliot Hodges2Noah Kravitz3Mitchell Lee4Harvard University, 1 Oxford Street, 02138, U.S.A.; E-mail:Harvard University, 1 Oxford Street, 02138, U.S.A.; E-mail:Harvard University, 1 Oxford Street, 02138, U.S.A.; E-mail:Princeton University, Washington Road, 08540, U.S.A.;Harvard University, 1 Oxford Street, 02138, U.S.A.; E-mail:Let $(W,S)$ be a Coxeter system, and write $S=\{s_i:i\in I\}$ , where I is a finite index set. Fix a nonempty convex subset $\mathscr {L}$ of W. If W is of type A, then $\mathscr {L}$ is the set of linear extensions of a poset, and there are important Bender–Knuth involutions $\mathrm {BK}_i\colon \mathscr {L}\to \mathscr {L}$ indexed by elements of I. For arbitrary W and for each $i\in I$ , we introduce an operator $\tau _i\colon W\to W$ (depending on $\mathscr {L}$ ) that we call a noninvertible Bender–Knuth toggle; this operator restricts to an involution on $\mathscr {L}$ that coincides with $\mathrm {BK}_i$ in type A. Given a Coxeter element $c=s_{i_n}\cdots s_{i_1}$ , we consider the operator $\mathrm {Pro}_c=\tau _{i_n}\cdots \tau _{i_1}$ . We say W is futuristic if for every nonempty finite convex set $\mathscr {L}$ , every Coxeter element c and every $u\in W$ , there exists an integer $K\geq 0$ such that $\mathrm {Pro}_c^K(u)\in \mathscr {L}$ . We prove that finite Coxeter groups, right-angled Coxeter groups, rank-3 Coxeter groups, affine Coxeter groups of types $\widetilde A$ and $\widetilde C$ , and Coxeter groups whose Coxeter graphs are complete are all futuristic. When W is finite, we actually prove that if $s_{i_N}\cdots s_{i_1}$ is a reduced expression for the long element of W, then $\tau _{i_N}\cdots \tau _{i_1}(W)=\mathscr {L}$ ; this allows us to determine the smallest integer $\mathrm {M}(c)$ such that $\mathrm {Pro}_c^{{\mathrm {M}}(c)}(W)=\mathscr {L}$ for all $\mathscr {L}$ . We also exhibit infinitely many non-futuristic Coxeter groups, including all irreducible affine Coxeter groups that are not of type $\widetilde A$ , $\widetilde C$ , or $\widetilde G_2$ .https://www.cambridge.org/core/product/identifier/S2050509424001592/type/journal_article05E1820F5537B20
spellingShingle Grant Barkley
Colin Defant
Eliot Hodges
Noah Kravitz
Mitchell Lee
Bender–Knuth Billiards in Coxeter Groups
Forum of Mathematics, Sigma
05E18
20F55
37B20
title Bender–Knuth Billiards in Coxeter Groups
title_full Bender–Knuth Billiards in Coxeter Groups
title_fullStr Bender–Knuth Billiards in Coxeter Groups
title_full_unstemmed Bender–Knuth Billiards in Coxeter Groups
title_short Bender–Knuth Billiards in Coxeter Groups
title_sort bender knuth billiards in coxeter groups
topic 05E18
20F55
37B20
url https://www.cambridge.org/core/product/identifier/S2050509424001592/type/journal_article
work_keys_str_mv AT grantbarkley benderknuthbilliardsincoxetergroups
AT colindefant benderknuthbilliardsincoxetergroups
AT eliothodges benderknuthbilliardsincoxetergroups
AT noahkravitz benderknuthbilliardsincoxetergroups
AT mitchelllee benderknuthbilliardsincoxetergroups