Scrutinizing $$B^0$$ B 0 -meson flavor changing neutral current decay into scalar $$K_0^*(1430)$$ K 0 ∗ ( 1430 ) meson with $$b\rightarrow s \ell ^+\ell ^-(\nu \bar{\nu })$$ b → s ℓ + ℓ - ( ν ν ¯ ) transition
Abstract In this paper, we investigate the rare decay $$B^0\rightarrow K_0^*(1430)\ell ^+\ell ^-$$ B 0 → K 0 ∗ ( 1430 ) ℓ + ℓ - with $$\ell =(e,\mu ,\tau )$$ ℓ = ( e , μ , τ ) and $$B^0\rightarrow K_0^*(1430)\nu \bar{\nu }$$ B 0 → K 0 ∗ ( 1430 ) ν ν ¯ induced by the flavor changing neutral current t...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2025-01-01
|
Series: | European Physical Journal C: Particles and Fields |
Online Access: | https://doi.org/10.1140/epjc/s10052-025-13764-3 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832585460941062144 |
---|---|
author | Yin-Long Yang Ya-Xiong Wang Hai-Bing Fu Tao Zhong Ya-Lin Song |
author_facet | Yin-Long Yang Ya-Xiong Wang Hai-Bing Fu Tao Zhong Ya-Lin Song |
author_sort | Yin-Long Yang |
collection | DOAJ |
description | Abstract In this paper, we investigate the rare decay $$B^0\rightarrow K_0^*(1430)\ell ^+\ell ^-$$ B 0 → K 0 ∗ ( 1430 ) ℓ + ℓ - with $$\ell =(e,\mu ,\tau )$$ ℓ = ( e , μ , τ ) and $$B^0\rightarrow K_0^*(1430)\nu \bar{\nu }$$ B 0 → K 0 ∗ ( 1430 ) ν ν ¯ induced by the flavor changing neutral current transition of $$b\rightarrow s\ell ^+\ell ^-(\nu \bar{\nu })$$ b → s ℓ + ℓ - ( ν ν ¯ ) . Firstly, the $$B^0\rightarrow K_0^*(1430)$$ B 0 → K 0 ∗ ( 1430 ) transition form factors (TFFs) are calculated by using the QCD light-cone sum rule approach up to next-to-leading order accuracy. In which the $$K_0^*(1430)$$ K 0 ∗ ( 1430 ) -meson twist-2 and twist-3 LCDAs have been calculated both from the SVZ sum rule in the background field theory framework and light-cone harmonic oscillator model. Then, we obtain the three TFFs at large recoil point, i.e., $$f_+^{B^0\rightarrow K_0^*}(0)= 0.470_{-0.101}^{+0.086}$$ f + B 0 → K 0 ∗ ( 0 ) = 0 . 470 - 0.101 + 0.086 , $$f_-^{B^0\rightarrow K_0^*}(0)= -0.340_{-0.068}^{+0.068}$$ f - B 0 → K 0 ∗ ( 0 ) = - 0 . 340 - 0.068 + 0.068 , and $$f_\textrm{T}^{B^0\rightarrow K_0^*}(0)= 0.537^{+0.112}_{-0.115}$$ f T B 0 → K 0 ∗ ( 0 ) = 0 . 537 - 0.115 + 0.112 . Meanwhile, we extrapolate TFFs to the whole physical $$q^2$$ q 2 -region by using the simplified $$z(q^2)$$ z ( q 2 ) -series expansion. Furthermore, we calculate the $$B^0\rightarrow K_0^*(1430)\ell ^+\ell ^-(\nu \bar{\nu })$$ B 0 → K 0 ∗ ( 1430 ) ℓ + ℓ - ( ν ν ¯ ) decay widths, branching fractions, and longitudinal lepton polarization asymmetries of $$B^0\rightarrow K_0^*(1430)\ell ^+\ell ^-$$ B 0 → K 0 ∗ ( 1430 ) ℓ + ℓ - , which lead to $$\mathcal{B}(B^0\rightarrow K_0^*(1430)e^+e^-) = (6.65^{+2.52}_{-2.42})\times 10^{-7}$$ B ( B 0 → K 0 ∗ ( 1430 ) e + e - ) = ( 6 . 65 - 2.42 + 2.52 ) × 10 - 7 , $$\mathcal{B}(B^0\rightarrow K_0^*(1430)\mu ^+\mu ^-)=(6.62^{+2.51}_{-2.41})\times 10^{-7}$$ B ( B 0 → K 0 ∗ ( 1430 ) μ + μ - ) = ( 6 . 62 - 2.41 + 2.51 ) × 10 - 7 , $$\mathcal{B}(B^0\rightarrow K_0^*(1430)\tau ^+\tau ^-)=(1.88^{+1.10}_{-0.97})\times 10^{-8}$$ B ( B 0 → K 0 ∗ ( 1430 ) τ + τ - ) = ( 1 . 88 - 0.97 + 1.10 ) × 10 - 8 , $$\mathcal{B}(B^0\rightarrow K_0^*(1430)\nu \bar{\nu })= 3.85^{+1.55}_{-1.48}\times 10^{-6}$$ B ( B 0 → K 0 ∗ ( 1430 ) ν ν ¯ ) = 3 . 85 - 1.48 + 1.55 × 10 - 6 and the integrated longitudinal lepton polarization asymmetries $$\langle A_{P_L} \rangle = (-0.99, -0.96, -0.03)$$ ⟨ A P L ⟩ = ( - 0.99 , - 0.96 , - 0.03 ) for the cases $$\ell =(e, \mu , \tau )$$ ℓ = ( e , μ , τ ) respectively. |
format | Article |
id | doaj-art-e401489b9a784c3da42919ea8457f651 |
institution | Kabale University |
issn | 1434-6052 |
language | English |
publishDate | 2025-01-01 |
publisher | SpringerOpen |
record_format | Article |
series | European Physical Journal C: Particles and Fields |
spelling | doaj-art-e401489b9a784c3da42919ea8457f6512025-01-26T12:49:28ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60522025-01-0185111810.1140/epjc/s10052-025-13764-3Scrutinizing $$B^0$$ B 0 -meson flavor changing neutral current decay into scalar $$K_0^*(1430)$$ K 0 ∗ ( 1430 ) meson with $$b\rightarrow s \ell ^+\ell ^-(\nu \bar{\nu })$$ b → s ℓ + ℓ - ( ν ν ¯ ) transitionYin-Long Yang0Ya-Xiong Wang1Hai-Bing Fu2Tao Zhong3Ya-Lin Song4Department of Physics, Guizhou Minzu UniversityDepartment of Physics, Guizhou Minzu UniversityDepartment of Physics, Guizhou Minzu UniversityDepartment of Physics, Guizhou Minzu UniversityDepartment of Physics, Guizhou Minzu UniversityAbstract In this paper, we investigate the rare decay $$B^0\rightarrow K_0^*(1430)\ell ^+\ell ^-$$ B 0 → K 0 ∗ ( 1430 ) ℓ + ℓ - with $$\ell =(e,\mu ,\tau )$$ ℓ = ( e , μ , τ ) and $$B^0\rightarrow K_0^*(1430)\nu \bar{\nu }$$ B 0 → K 0 ∗ ( 1430 ) ν ν ¯ induced by the flavor changing neutral current transition of $$b\rightarrow s\ell ^+\ell ^-(\nu \bar{\nu })$$ b → s ℓ + ℓ - ( ν ν ¯ ) . Firstly, the $$B^0\rightarrow K_0^*(1430)$$ B 0 → K 0 ∗ ( 1430 ) transition form factors (TFFs) are calculated by using the QCD light-cone sum rule approach up to next-to-leading order accuracy. In which the $$K_0^*(1430)$$ K 0 ∗ ( 1430 ) -meson twist-2 and twist-3 LCDAs have been calculated both from the SVZ sum rule in the background field theory framework and light-cone harmonic oscillator model. Then, we obtain the three TFFs at large recoil point, i.e., $$f_+^{B^0\rightarrow K_0^*}(0)= 0.470_{-0.101}^{+0.086}$$ f + B 0 → K 0 ∗ ( 0 ) = 0 . 470 - 0.101 + 0.086 , $$f_-^{B^0\rightarrow K_0^*}(0)= -0.340_{-0.068}^{+0.068}$$ f - B 0 → K 0 ∗ ( 0 ) = - 0 . 340 - 0.068 + 0.068 , and $$f_\textrm{T}^{B^0\rightarrow K_0^*}(0)= 0.537^{+0.112}_{-0.115}$$ f T B 0 → K 0 ∗ ( 0 ) = 0 . 537 - 0.115 + 0.112 . Meanwhile, we extrapolate TFFs to the whole physical $$q^2$$ q 2 -region by using the simplified $$z(q^2)$$ z ( q 2 ) -series expansion. Furthermore, we calculate the $$B^0\rightarrow K_0^*(1430)\ell ^+\ell ^-(\nu \bar{\nu })$$ B 0 → K 0 ∗ ( 1430 ) ℓ + ℓ - ( ν ν ¯ ) decay widths, branching fractions, and longitudinal lepton polarization asymmetries of $$B^0\rightarrow K_0^*(1430)\ell ^+\ell ^-$$ B 0 → K 0 ∗ ( 1430 ) ℓ + ℓ - , which lead to $$\mathcal{B}(B^0\rightarrow K_0^*(1430)e^+e^-) = (6.65^{+2.52}_{-2.42})\times 10^{-7}$$ B ( B 0 → K 0 ∗ ( 1430 ) e + e - ) = ( 6 . 65 - 2.42 + 2.52 ) × 10 - 7 , $$\mathcal{B}(B^0\rightarrow K_0^*(1430)\mu ^+\mu ^-)=(6.62^{+2.51}_{-2.41})\times 10^{-7}$$ B ( B 0 → K 0 ∗ ( 1430 ) μ + μ - ) = ( 6 . 62 - 2.41 + 2.51 ) × 10 - 7 , $$\mathcal{B}(B^0\rightarrow K_0^*(1430)\tau ^+\tau ^-)=(1.88^{+1.10}_{-0.97})\times 10^{-8}$$ B ( B 0 → K 0 ∗ ( 1430 ) τ + τ - ) = ( 1 . 88 - 0.97 + 1.10 ) × 10 - 8 , $$\mathcal{B}(B^0\rightarrow K_0^*(1430)\nu \bar{\nu })= 3.85^{+1.55}_{-1.48}\times 10^{-6}$$ B ( B 0 → K 0 ∗ ( 1430 ) ν ν ¯ ) = 3 . 85 - 1.48 + 1.55 × 10 - 6 and the integrated longitudinal lepton polarization asymmetries $$\langle A_{P_L} \rangle = (-0.99, -0.96, -0.03)$$ ⟨ A P L ⟩ = ( - 0.99 , - 0.96 , - 0.03 ) for the cases $$\ell =(e, \mu , \tau )$$ ℓ = ( e , μ , τ ) respectively.https://doi.org/10.1140/epjc/s10052-025-13764-3 |
spellingShingle | Yin-Long Yang Ya-Xiong Wang Hai-Bing Fu Tao Zhong Ya-Lin Song Scrutinizing $$B^0$$ B 0 -meson flavor changing neutral current decay into scalar $$K_0^*(1430)$$ K 0 ∗ ( 1430 ) meson with $$b\rightarrow s \ell ^+\ell ^-(\nu \bar{\nu })$$ b → s ℓ + ℓ - ( ν ν ¯ ) transition European Physical Journal C: Particles and Fields |
title | Scrutinizing $$B^0$$ B 0 -meson flavor changing neutral current decay into scalar $$K_0^*(1430)$$ K 0 ∗ ( 1430 ) meson with $$b\rightarrow s \ell ^+\ell ^-(\nu \bar{\nu })$$ b → s ℓ + ℓ - ( ν ν ¯ ) transition |
title_full | Scrutinizing $$B^0$$ B 0 -meson flavor changing neutral current decay into scalar $$K_0^*(1430)$$ K 0 ∗ ( 1430 ) meson with $$b\rightarrow s \ell ^+\ell ^-(\nu \bar{\nu })$$ b → s ℓ + ℓ - ( ν ν ¯ ) transition |
title_fullStr | Scrutinizing $$B^0$$ B 0 -meson flavor changing neutral current decay into scalar $$K_0^*(1430)$$ K 0 ∗ ( 1430 ) meson with $$b\rightarrow s \ell ^+\ell ^-(\nu \bar{\nu })$$ b → s ℓ + ℓ - ( ν ν ¯ ) transition |
title_full_unstemmed | Scrutinizing $$B^0$$ B 0 -meson flavor changing neutral current decay into scalar $$K_0^*(1430)$$ K 0 ∗ ( 1430 ) meson with $$b\rightarrow s \ell ^+\ell ^-(\nu \bar{\nu })$$ b → s ℓ + ℓ - ( ν ν ¯ ) transition |
title_short | Scrutinizing $$B^0$$ B 0 -meson flavor changing neutral current decay into scalar $$K_0^*(1430)$$ K 0 ∗ ( 1430 ) meson with $$b\rightarrow s \ell ^+\ell ^-(\nu \bar{\nu })$$ b → s ℓ + ℓ - ( ν ν ¯ ) transition |
title_sort | scrutinizing b 0 b 0 meson flavor changing neutral current decay into scalar k 0 1430 k 0 ∗ 1430 meson with b rightarrow s ell ell nu bar nu b s l l ν ν ¯ transition |
url | https://doi.org/10.1140/epjc/s10052-025-13764-3 |
work_keys_str_mv | AT yinlongyang scrutinizingb0b0mesonflavorchangingneutralcurrentdecayintoscalark01430k01430mesonwithbrightarrowsellellnubarnubsllnntransition AT yaxiongwang scrutinizingb0b0mesonflavorchangingneutralcurrentdecayintoscalark01430k01430mesonwithbrightarrowsellellnubarnubsllnntransition AT haibingfu scrutinizingb0b0mesonflavorchangingneutralcurrentdecayintoscalark01430k01430mesonwithbrightarrowsellellnubarnubsllnntransition AT taozhong scrutinizingb0b0mesonflavorchangingneutralcurrentdecayintoscalark01430k01430mesonwithbrightarrowsellellnubarnubsllnntransition AT yalinsong scrutinizingb0b0mesonflavorchangingneutralcurrentdecayintoscalark01430k01430mesonwithbrightarrowsellellnubarnubsllnntransition |