Scrutinizing $$B^0$$ B 0 -meson flavor changing neutral current decay into scalar $$K_0^*(1430)$$ K 0 ∗ ( 1430 ) meson with $$b\rightarrow s \ell ^+\ell ^-(\nu \bar{\nu })$$ b → s ℓ + ℓ - ( ν ν ¯ ) transition

Abstract In this paper, we investigate the rare decay $$B^0\rightarrow K_0^*(1430)\ell ^+\ell ^-$$ B 0 → K 0 ∗ ( 1430 ) ℓ + ℓ - with $$\ell =(e,\mu ,\tau )$$ ℓ = ( e , μ , τ ) and $$B^0\rightarrow K_0^*(1430)\nu \bar{\nu }$$ B 0 → K 0 ∗ ( 1430 ) ν ν ¯ induced by the flavor changing neutral current t...

Full description

Saved in:
Bibliographic Details
Main Authors: Yin-Long Yang, Ya-Xiong Wang, Hai-Bing Fu, Tao Zhong, Ya-Lin Song
Format: Article
Language:English
Published: SpringerOpen 2025-01-01
Series:European Physical Journal C: Particles and Fields
Online Access:https://doi.org/10.1140/epjc/s10052-025-13764-3
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832585460941062144
author Yin-Long Yang
Ya-Xiong Wang
Hai-Bing Fu
Tao Zhong
Ya-Lin Song
author_facet Yin-Long Yang
Ya-Xiong Wang
Hai-Bing Fu
Tao Zhong
Ya-Lin Song
author_sort Yin-Long Yang
collection DOAJ
description Abstract In this paper, we investigate the rare decay $$B^0\rightarrow K_0^*(1430)\ell ^+\ell ^-$$ B 0 → K 0 ∗ ( 1430 ) ℓ + ℓ - with $$\ell =(e,\mu ,\tau )$$ ℓ = ( e , μ , τ ) and $$B^0\rightarrow K_0^*(1430)\nu \bar{\nu }$$ B 0 → K 0 ∗ ( 1430 ) ν ν ¯ induced by the flavor changing neutral current transition of $$b\rightarrow s\ell ^+\ell ^-(\nu \bar{\nu })$$ b → s ℓ + ℓ - ( ν ν ¯ ) . Firstly, the $$B^0\rightarrow K_0^*(1430)$$ B 0 → K 0 ∗ ( 1430 ) transition form factors (TFFs) are calculated by using the QCD light-cone sum rule approach up to next-to-leading order accuracy. In which the $$K_0^*(1430)$$ K 0 ∗ ( 1430 ) -meson twist-2 and twist-3 LCDAs have been calculated both from the SVZ sum rule in the background field theory framework and light-cone harmonic oscillator model. Then, we obtain the three TFFs at large recoil point, i.e., $$f_+^{B^0\rightarrow K_0^*}(0)= 0.470_{-0.101}^{+0.086}$$ f + B 0 → K 0 ∗ ( 0 ) = 0 . 470 - 0.101 + 0.086 , $$f_-^{B^0\rightarrow K_0^*}(0)= -0.340_{-0.068}^{+0.068}$$ f - B 0 → K 0 ∗ ( 0 ) = - 0 . 340 - 0.068 + 0.068 , and $$f_\textrm{T}^{B^0\rightarrow K_0^*}(0)= 0.537^{+0.112}_{-0.115}$$ f T B 0 → K 0 ∗ ( 0 ) = 0 . 537 - 0.115 + 0.112 . Meanwhile, we extrapolate TFFs to the whole physical $$q^2$$ q 2 -region by using the simplified $$z(q^2)$$ z ( q 2 ) -series expansion. Furthermore, we calculate the $$B^0\rightarrow K_0^*(1430)\ell ^+\ell ^-(\nu \bar{\nu })$$ B 0 → K 0 ∗ ( 1430 ) ℓ + ℓ - ( ν ν ¯ ) decay widths, branching fractions, and longitudinal lepton polarization asymmetries of $$B^0\rightarrow K_0^*(1430)\ell ^+\ell ^-$$ B 0 → K 0 ∗ ( 1430 ) ℓ + ℓ - , which lead to $$\mathcal{B}(B^0\rightarrow K_0^*(1430)e^+e^-) = (6.65^{+2.52}_{-2.42})\times 10^{-7}$$ B ( B 0 → K 0 ∗ ( 1430 ) e + e - ) = ( 6 . 65 - 2.42 + 2.52 ) × 10 - 7 , $$\mathcal{B}(B^0\rightarrow K_0^*(1430)\mu ^+\mu ^-)=(6.62^{+2.51}_{-2.41})\times 10^{-7}$$ B ( B 0 → K 0 ∗ ( 1430 ) μ + μ - ) = ( 6 . 62 - 2.41 + 2.51 ) × 10 - 7 , $$\mathcal{B}(B^0\rightarrow K_0^*(1430)\tau ^+\tau ^-)=(1.88^{+1.10}_{-0.97})\times 10^{-8}$$ B ( B 0 → K 0 ∗ ( 1430 ) τ + τ - ) = ( 1 . 88 - 0.97 + 1.10 ) × 10 - 8 , $$\mathcal{B}(B^0\rightarrow K_0^*(1430)\nu \bar{\nu })= 3.85^{+1.55}_{-1.48}\times 10^{-6}$$ B ( B 0 → K 0 ∗ ( 1430 ) ν ν ¯ ) = 3 . 85 - 1.48 + 1.55 × 10 - 6 and the integrated longitudinal lepton polarization asymmetries $$\langle A_{P_L} \rangle = (-0.99, -0.96, -0.03)$$ ⟨ A P L ⟩ = ( - 0.99 , - 0.96 , - 0.03 ) for the cases $$\ell =(e, \mu , \tau )$$ ℓ = ( e , μ , τ ) respectively.
format Article
id doaj-art-e401489b9a784c3da42919ea8457f651
institution Kabale University
issn 1434-6052
language English
publishDate 2025-01-01
publisher SpringerOpen
record_format Article
series European Physical Journal C: Particles and Fields
spelling doaj-art-e401489b9a784c3da42919ea8457f6512025-01-26T12:49:28ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60522025-01-0185111810.1140/epjc/s10052-025-13764-3Scrutinizing $$B^0$$ B 0 -meson flavor changing neutral current decay into scalar $$K_0^*(1430)$$ K 0 ∗ ( 1430 ) meson with $$b\rightarrow s \ell ^+\ell ^-(\nu \bar{\nu })$$ b → s ℓ + ℓ - ( ν ν ¯ ) transitionYin-Long Yang0Ya-Xiong Wang1Hai-Bing Fu2Tao Zhong3Ya-Lin Song4Department of Physics, Guizhou Minzu UniversityDepartment of Physics, Guizhou Minzu UniversityDepartment of Physics, Guizhou Minzu UniversityDepartment of Physics, Guizhou Minzu UniversityDepartment of Physics, Guizhou Minzu UniversityAbstract In this paper, we investigate the rare decay $$B^0\rightarrow K_0^*(1430)\ell ^+\ell ^-$$ B 0 → K 0 ∗ ( 1430 ) ℓ + ℓ - with $$\ell =(e,\mu ,\tau )$$ ℓ = ( e , μ , τ ) and $$B^0\rightarrow K_0^*(1430)\nu \bar{\nu }$$ B 0 → K 0 ∗ ( 1430 ) ν ν ¯ induced by the flavor changing neutral current transition of $$b\rightarrow s\ell ^+\ell ^-(\nu \bar{\nu })$$ b → s ℓ + ℓ - ( ν ν ¯ ) . Firstly, the $$B^0\rightarrow K_0^*(1430)$$ B 0 → K 0 ∗ ( 1430 ) transition form factors (TFFs) are calculated by using the QCD light-cone sum rule approach up to next-to-leading order accuracy. In which the $$K_0^*(1430)$$ K 0 ∗ ( 1430 ) -meson twist-2 and twist-3 LCDAs have been calculated both from the SVZ sum rule in the background field theory framework and light-cone harmonic oscillator model. Then, we obtain the three TFFs at large recoil point, i.e., $$f_+^{B^0\rightarrow K_0^*}(0)= 0.470_{-0.101}^{+0.086}$$ f + B 0 → K 0 ∗ ( 0 ) = 0 . 470 - 0.101 + 0.086 , $$f_-^{B^0\rightarrow K_0^*}(0)= -0.340_{-0.068}^{+0.068}$$ f - B 0 → K 0 ∗ ( 0 ) = - 0 . 340 - 0.068 + 0.068 , and $$f_\textrm{T}^{B^0\rightarrow K_0^*}(0)= 0.537^{+0.112}_{-0.115}$$ f T B 0 → K 0 ∗ ( 0 ) = 0 . 537 - 0.115 + 0.112 . Meanwhile, we extrapolate TFFs to the whole physical $$q^2$$ q 2 -region by using the simplified $$z(q^2)$$ z ( q 2 ) -series expansion. Furthermore, we calculate the $$B^0\rightarrow K_0^*(1430)\ell ^+\ell ^-(\nu \bar{\nu })$$ B 0 → K 0 ∗ ( 1430 ) ℓ + ℓ - ( ν ν ¯ ) decay widths, branching fractions, and longitudinal lepton polarization asymmetries of $$B^0\rightarrow K_0^*(1430)\ell ^+\ell ^-$$ B 0 → K 0 ∗ ( 1430 ) ℓ + ℓ - , which lead to $$\mathcal{B}(B^0\rightarrow K_0^*(1430)e^+e^-) = (6.65^{+2.52}_{-2.42})\times 10^{-7}$$ B ( B 0 → K 0 ∗ ( 1430 ) e + e - ) = ( 6 . 65 - 2.42 + 2.52 ) × 10 - 7 , $$\mathcal{B}(B^0\rightarrow K_0^*(1430)\mu ^+\mu ^-)=(6.62^{+2.51}_{-2.41})\times 10^{-7}$$ B ( B 0 → K 0 ∗ ( 1430 ) μ + μ - ) = ( 6 . 62 - 2.41 + 2.51 ) × 10 - 7 , $$\mathcal{B}(B^0\rightarrow K_0^*(1430)\tau ^+\tau ^-)=(1.88^{+1.10}_{-0.97})\times 10^{-8}$$ B ( B 0 → K 0 ∗ ( 1430 ) τ + τ - ) = ( 1 . 88 - 0.97 + 1.10 ) × 10 - 8 , $$\mathcal{B}(B^0\rightarrow K_0^*(1430)\nu \bar{\nu })= 3.85^{+1.55}_{-1.48}\times 10^{-6}$$ B ( B 0 → K 0 ∗ ( 1430 ) ν ν ¯ ) = 3 . 85 - 1.48 + 1.55 × 10 - 6 and the integrated longitudinal lepton polarization asymmetries $$\langle A_{P_L} \rangle = (-0.99, -0.96, -0.03)$$ ⟨ A P L ⟩ = ( - 0.99 , - 0.96 , - 0.03 ) for the cases $$\ell =(e, \mu , \tau )$$ ℓ = ( e , μ , τ ) respectively.https://doi.org/10.1140/epjc/s10052-025-13764-3
spellingShingle Yin-Long Yang
Ya-Xiong Wang
Hai-Bing Fu
Tao Zhong
Ya-Lin Song
Scrutinizing $$B^0$$ B 0 -meson flavor changing neutral current decay into scalar $$K_0^*(1430)$$ K 0 ∗ ( 1430 ) meson with $$b\rightarrow s \ell ^+\ell ^-(\nu \bar{\nu })$$ b → s ℓ + ℓ - ( ν ν ¯ ) transition
European Physical Journal C: Particles and Fields
title Scrutinizing $$B^0$$ B 0 -meson flavor changing neutral current decay into scalar $$K_0^*(1430)$$ K 0 ∗ ( 1430 ) meson with $$b\rightarrow s \ell ^+\ell ^-(\nu \bar{\nu })$$ b → s ℓ + ℓ - ( ν ν ¯ ) transition
title_full Scrutinizing $$B^0$$ B 0 -meson flavor changing neutral current decay into scalar $$K_0^*(1430)$$ K 0 ∗ ( 1430 ) meson with $$b\rightarrow s \ell ^+\ell ^-(\nu \bar{\nu })$$ b → s ℓ + ℓ - ( ν ν ¯ ) transition
title_fullStr Scrutinizing $$B^0$$ B 0 -meson flavor changing neutral current decay into scalar $$K_0^*(1430)$$ K 0 ∗ ( 1430 ) meson with $$b\rightarrow s \ell ^+\ell ^-(\nu \bar{\nu })$$ b → s ℓ + ℓ - ( ν ν ¯ ) transition
title_full_unstemmed Scrutinizing $$B^0$$ B 0 -meson flavor changing neutral current decay into scalar $$K_0^*(1430)$$ K 0 ∗ ( 1430 ) meson with $$b\rightarrow s \ell ^+\ell ^-(\nu \bar{\nu })$$ b → s ℓ + ℓ - ( ν ν ¯ ) transition
title_short Scrutinizing $$B^0$$ B 0 -meson flavor changing neutral current decay into scalar $$K_0^*(1430)$$ K 0 ∗ ( 1430 ) meson with $$b\rightarrow s \ell ^+\ell ^-(\nu \bar{\nu })$$ b → s ℓ + ℓ - ( ν ν ¯ ) transition
title_sort scrutinizing b 0 b 0 meson flavor changing neutral current decay into scalar k 0 1430 k 0 ∗ 1430 meson with b rightarrow s ell ell nu bar nu b s l l ν ν ¯ transition
url https://doi.org/10.1140/epjc/s10052-025-13764-3
work_keys_str_mv AT yinlongyang scrutinizingb0b0mesonflavorchangingneutralcurrentdecayintoscalark01430k01430mesonwithbrightarrowsellellnubarnubsllnntransition
AT yaxiongwang scrutinizingb0b0mesonflavorchangingneutralcurrentdecayintoscalark01430k01430mesonwithbrightarrowsellellnubarnubsllnntransition
AT haibingfu scrutinizingb0b0mesonflavorchangingneutralcurrentdecayintoscalark01430k01430mesonwithbrightarrowsellellnubarnubsllnntransition
AT taozhong scrutinizingb0b0mesonflavorchangingneutralcurrentdecayintoscalark01430k01430mesonwithbrightarrowsellellnubarnubsllnntransition
AT yalinsong scrutinizingb0b0mesonflavorchangingneutralcurrentdecayintoscalark01430k01430mesonwithbrightarrowsellellnubarnubsllnntransition