Transfer learning for linear regression with differential privacy
Abstract Transfer learning, as a machine learning approach to enhance model generalization, has found widespread applications across various domains. However, the risk of privacy leakage during the transfer process remains a crucial consideration. Differential privacy, with its rigorous mathematical...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Springer
2024-12-01
|
Series: | Complex & Intelligent Systems |
Subjects: | |
Online Access: | https://doi.org/10.1007/s40747-024-01759-8 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|