Fractional Operators in p-adic Variable Exponent Lebesgue Spaces and Application to p-adic Derivative

In this paper, we prove the boundedness of the fractional maximal and the fractional integral operator in the p-adic variable exponent Lebesgue spaces. As an application, we show the existence and uniqueness of the solution for a nonhomogeneous Cauchy problem in the p-adic variable exponent Lebesgue...

Full description

Saved in:
Bibliographic Details
Main Authors: Leonardo Fabio Chacón-Cortés, Humberto Rafeiro
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2021/3096701
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832546095355396096
author Leonardo Fabio Chacón-Cortés
Humberto Rafeiro
author_facet Leonardo Fabio Chacón-Cortés
Humberto Rafeiro
author_sort Leonardo Fabio Chacón-Cortés
collection DOAJ
description In this paper, we prove the boundedness of the fractional maximal and the fractional integral operator in the p-adic variable exponent Lebesgue spaces. As an application, we show the existence and uniqueness of the solution for a nonhomogeneous Cauchy problem in the p-adic variable exponent Lebesgue spaces.
format Article
id doaj-art-e30c164f18cb4dbda9c89211e5d52a95
institution Kabale University
issn 2314-8896
2314-8888
language English
publishDate 2021-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces
spelling doaj-art-e30c164f18cb4dbda9c89211e5d52a952025-02-03T07:23:53ZengWileyJournal of Function Spaces2314-88962314-88882021-01-01202110.1155/2021/30967013096701Fractional Operators in p-adic Variable Exponent Lebesgue Spaces and Application to p-adic DerivativeLeonardo Fabio Chacón-Cortés0Humberto Rafeiro1Departamento de Matemáticas, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra. 7 No. 43-82, Bogotá, ColombiaDepartment of Mathematical Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, UAEIn this paper, we prove the boundedness of the fractional maximal and the fractional integral operator in the p-adic variable exponent Lebesgue spaces. As an application, we show the existence and uniqueness of the solution for a nonhomogeneous Cauchy problem in the p-adic variable exponent Lebesgue spaces.http://dx.doi.org/10.1155/2021/3096701
spellingShingle Leonardo Fabio Chacón-Cortés
Humberto Rafeiro
Fractional Operators in p-adic Variable Exponent Lebesgue Spaces and Application to p-adic Derivative
Journal of Function Spaces
title Fractional Operators in p-adic Variable Exponent Lebesgue Spaces and Application to p-adic Derivative
title_full Fractional Operators in p-adic Variable Exponent Lebesgue Spaces and Application to p-adic Derivative
title_fullStr Fractional Operators in p-adic Variable Exponent Lebesgue Spaces and Application to p-adic Derivative
title_full_unstemmed Fractional Operators in p-adic Variable Exponent Lebesgue Spaces and Application to p-adic Derivative
title_short Fractional Operators in p-adic Variable Exponent Lebesgue Spaces and Application to p-adic Derivative
title_sort fractional operators in p adic variable exponent lebesgue spaces and application to p adic derivative
url http://dx.doi.org/10.1155/2021/3096701
work_keys_str_mv AT leonardofabiochaconcortes fractionaloperatorsinpadicvariableexponentlebesguespacesandapplicationtopadicderivative
AT humbertorafeiro fractionaloperatorsinpadicvariableexponentlebesguespacesandapplicationtopadicderivative