Robotic Positioning Accuracy Enhancement via Memory Red Billed Blue Magpie Optimizer and Adaptive Momentum PSO Tuned Graph Neural Network
Robotic positioning accuracy is critically affected by both geometric and non-geometric errors. To address this dual error issue comprehensively, this paper proposes a novel two-stage compensation framework. First, a Memory based red billed blue magpie optimizer (MRBMO) is employed to identify and c...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Machines |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-1702/13/6/526 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|