Human Urinary Kallidinogenase Reduces Lipopolysaccharide-Induced Neuroinflammation and Oxidative Stress in BV-2 Cells

Migraine is one of the most common neurological disorders which poses significant socioeconomic burden worldwide. Neuroinflammation and oxidative stress both play important roles in the pathogenesis of migraine. Human urinary kallidinogenase (UK) is a tissue kallikrein derived from human urine. Incr...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhongyan Zhao, Zhiyu Xu, Tao Liu, Shixiong Huang, Huai Huang, Xiaoyun Huang
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Pain Research and Management
Online Access:http://dx.doi.org/10.1155/2019/6393150
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Migraine is one of the most common neurological disorders which poses significant socioeconomic burden worldwide. Neuroinflammation and oxidative stress both play important roles in the pathogenesis of migraine. Human urinary kallidinogenase (UK) is a tissue kallikrein derived from human urine. Increasing evidence suggests that UK may protect against ischemic stroke, but UK’s treatment potential against migraine remains to be explored. Immortal BV-2 murine microglial cells were treated with UK (125 nM, 250 nM, and 500 nM) and then given lipopolysaccharides (LPS, 1000 ng/mL). Cell viability of BV-2 cells was tested by the CCK-8 assay. Expressions of tumor necrosis factor-α (TNFα), prostaglandin E2 (PGE2), interleukin-6 (IL-6), and interleukin-1β (IL-1β) were examined with the ELISA method and western blot. Intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) were measured to determine oxidative stress. Our results showed that LPS administration increased the levels of proinflammatory cytokines (TNFα, PGE2, IL-6, and IL-1β) and oxidative stress (ROS and MDA) when compared with the control group and decreased significantly upon introduction with UK. Taken together, UK treatment reduced LPS-induced neuroinflammation and oxidative stress in a dose-dependent manner, which might be a potential treatment of migraine.
ISSN:1203-6765
1918-1523