Dynamical System Analysis of a Lassa Fever Model with Varying Socioeconomic Classes

Lassa fever is an animal-borne acute viral illness caused by Lassa virus. It poses a serious health challenge around the world today, especially in West African countries like Ghana, Benin, Guinea, Liberia, Mali, Sierra Leone, and Nigeria. In this work, we formulate a multiple-patch Lassa fever mode...

Full description

Saved in:
Bibliographic Details
Main Authors: Ifeanyi Sunday Onah, Obiora Cornelius Collins
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2020/2601706
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lassa fever is an animal-borne acute viral illness caused by Lassa virus. It poses a serious health challenge around the world today, especially in West African countries like Ghana, Benin, Guinea, Liberia, Mali, Sierra Leone, and Nigeria. In this work, we formulate a multiple-patch Lassa fever model, where each patch denotes a socioeconomic class (SEC). Some of the important epidemiological features such as basic reproduction number of the model were determined and analysed accordingly. We further investigated how varying SECs affect the transmission dynamics of Lassa fever. We analysed the required state at which each SEC is responsible in driving the Lassa fever disease outbreak. Sensitivity analyses were carried out to determine the importance of model parameters to the disease transmission and prevalence. We carried out numerical simulation to support our analytical results. Finally, we extend some of the results of the 2-patch model to the general n-patch model.
ISSN:1110-757X
1687-0042