Multidimensional morphological analysis of live sperm based on multiple-target tracking
Manual semen evaluation methods are subjective and time-consuming. In this study, a deep learning algorithmic framework was designed to enable non-invasive multidimensional morphological analysis of live sperm in motion, improve current clinical sperm morphology testing methods, and significantly co...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2024-12-01
|
| Series: | Computational and Structural Biotechnology Journal |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2001037024000497 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|