An Optimal Viewpoint-Guided Visual Indexing Method for UAV Autonomous Localization

The autonomous positioning of drone-based remote sensing plays an important role in navigation in urban environments. Due to GNSS (Global Navigation Satellite System) signal occlusion, obtaining precise drone locations is still a challenging issue. Inspired by vision-based positioning methods, we pr...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhiyang Ye, Yukun Zheng, Zheng Ji, Wei Liu
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/13/2194
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The autonomous positioning of drone-based remote sensing plays an important role in navigation in urban environments. Due to GNSS (Global Navigation Satellite System) signal occlusion, obtaining precise drone locations is still a challenging issue. Inspired by vision-based positioning methods, we proposed an autonomous positioning method based on multi-view reference images rendered from the scene’s 3D geometric mesh and apply a bag-of-words (BoW) image retrieval pipeline to achieve efficient and scalable positioning, without utilizing deep learning-based retrieval or 3D point cloud registration. To minimize the number of reference images, scene coverage quantification and optimization are employed to generate the optimal viewpoints. The proposed method jointly exploits a visual-bag-of-words tree to accelerate reference image retrieval and improve retrieval accuracy, and the Perspective-n-Point (PnP) algorithm is utilized to obtain the drone’s pose. Experiments are conducted in urban real-word scenarios and the results show that positioning errors are decreased, with accuracy ranging from sub-meter to 5 m and an average latency of 0.7–1.3 s; this indicates that our method significantly improves accuracy and latency, offering robust, real-time performance over extensive areas without relying on GNSS or dense point clouds.
ISSN:2072-4292