Research on an Aerial Docking Strategy for Meta-UAVs Using Aerodynamic Data Surrogate Models

Meta-aircraft, in High-Altitude, Long-Endurance (HALE) unmanned aerial vehicle (UAV) applications, utilize a strategy of formation flying in the stratosphere and aerial docking in the troposphere to enhance flight range and gust resistance. This paper explores an aerial docking strategy for unmanned...

Full description

Saved in:
Bibliographic Details
Main Authors: Kangwen Sun, Yixiang Gao, Zhiyao Wang, Haoquan Liang, Chenxuan Zhao, Xinzhe Ji
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Drones
Subjects:
Online Access:https://www.mdpi.com/2504-446X/9/1/7
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Meta-aircraft, in High-Altitude, Long-Endurance (HALE) unmanned aerial vehicle (UAV) applications, utilize a strategy of formation flying in the stratosphere and aerial docking in the troposphere to enhance flight range and gust resistance. This paper explores an aerial docking strategy for unmanned meta-aircraft using a surrogate model based on aerodynamic data. The study begins with an analysis of the aerodynamic characteristics and the establishment of a dynamic model, followed by the development of a surrogate model using the vortex lattice method and a BP neural network. This model accurately simulates aerodynamic changes near the wingtip. Optimization of the docking process, focusing on impulse and moment of impulse, is achieved using a greedy algorithm. The results show a reduction in drag impulse and rolling moment by 10.89% and 15.76%, respectively, thereby easing the burden on the control system of UAVs.
ISSN:2504-446X