Two-Step Root-MUSIC for Direction of Arrival Estimation without EVD/SVD Computation

Most popular techniques for super-resolution direction of arrival (DOA) estimation rely on an eigen-decomposition (EVD) or a singular value decomposition (SVD) computation to determine the signal/noise subspace, which is computationally expensive for real-time applications. A two-step root multiple...

Full description

Saved in:
Bibliographic Details
Main Authors: Feng-Gang Yan, Shuai Liu, Jun Wang, Ming Jin
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:International Journal of Antennas and Propagation
Online Access:http://dx.doi.org/10.1155/2018/9695326
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Most popular techniques for super-resolution direction of arrival (DOA) estimation rely on an eigen-decomposition (EVD) or a singular value decomposition (SVD) computation to determine the signal/noise subspace, which is computationally expensive for real-time applications. A two-step root multiple signal classification (TS-root-MUSIC) algorithm is proposed to avoid the complex EVD/SVD computation using a uniform linear array (ULA) based on a mild assumption that the number of signals is less than half that of sensors. The ULA is divided into two subarrays, and three noise-free cross-correlation matrices are constructed using data collected by the two subarrays. A low-complexity linear operation is derived to obtain a rough noise subspace for a first-step DOA estimate. The performance is further enhanced in the second step by using the first-step result to renew the previous estimated noise subspace with a slightly increased complexity. The new technique can provide close root mean square error (RMSE) performance to root-MUSIC with reduced computational burden, which are verified by numerical simulations.
ISSN:1687-5869
1687-5877