Predicting the Evolution of Extreme Water Levels With Long Short‐Term Memory Station‐Based Approximated Models and Transfer Learning Techniques
Abstract Extreme water levels (EWLs) resulting from cyclones pose significant flood hazards and risks to coastal communities and interconnected ecosystems. To date, physically based models have enabled accurate prediction of EWLs despite their inherent high computational cost. However, the applicabi...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2025-03-01
|
| Series: | Water Resources Research |
| Subjects: | |
| Online Access: | https://doi.org/10.1029/2024WR039054 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|