Symmetric nonlinear solvable system of difference equations
We show the theoretical solvability of the system of difference equations $$x_{n+k}=\frac{y_{n+l}y_n-cd}{y_{n+l}+y_n-c-d},\quad y_{n+k}=\frac{x_{n+l}x_n-cd}{x_{n+l}+x_n-c-d},\quad n\in\mathbb{N}_0,$$ where $k\in\mathbb{N}$, $l\in\mathbb{N}_0$, $l<k$, $c, d\in\mathbb{C}$ and $x_j, y_j\in\mathbb{C}...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2024-09-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=11195 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!