Symmetric nonlinear solvable system of difference equations

We show the theoretical solvability of the system of difference equations $$x_{n+k}=\frac{y_{n+l}y_n-cd}{y_{n+l}+y_n-c-d},\quad y_{n+k}=\frac{x_{n+l}x_n-cd}{x_{n+l}+x_n-c-d},\quad n\in\mathbb{N}_0,$$ where $k\in\mathbb{N}$, $l\in\mathbb{N}_0$, $l<k$, $c, d\in\mathbb{C}$ and $x_j, y_j\in\mathbb{C}...

Full description

Saved in:
Bibliographic Details
Main Authors: Stevo Stevic, Bratislav Iricanin, Witold Kosmala
Format: Article
Language:English
Published: University of Szeged 2024-09-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=11195
Tags: Add Tag
No Tags, Be the first to tag this record!