The least primitive roots mod p

Let p>1p\gt 1 be a large prime number, and let ε>0\varepsilon \gt 0 be a small number. The established unconditional upper bounds of the least primitive root u≠±1,v2u\ne \pm 1,{v}^{2} in the prime finite field Fp{{\mathbb{F}}}_{p} have exponential magnitudes u≪p1⁄4+εu\ll {p}^{1/4+\varepsilon }...

Full description

Saved in:
Bibliographic Details
Main Author: Carella Nelson
Format: Article
Language:English
Published: De Gruyter 2025-04-01
Series:Journal of Mathematical Cryptology
Subjects:
Online Access:https://doi.org/10.1515/jmc-2024-0017
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850265823237636096
author Carella Nelson
author_facet Carella Nelson
author_sort Carella Nelson
collection DOAJ
description Let p>1p\gt 1 be a large prime number, and let ε>0\varepsilon \gt 0 be a small number. The established unconditional upper bounds of the least primitive root u≠±1,v2u\ne \pm 1,{v}^{2} in the prime finite field Fp{{\mathbb{F}}}_{p} have exponential magnitudes u≪p1⁄4+εu\ll {p}^{1/4+\varepsilon }. This note contributes a new result to the literature. It proves that the upper bound of the least primitive root has polynomial magnitude u≤(logp)1+εu\le {\left(\log p)}^{1+\varepsilon } unconditionally.
format Article
id doaj-art-cfa734a5a4254484a8dd048f349653da
institution OA Journals
issn 1862-2984
language English
publishDate 2025-04-01
publisher De Gruyter
record_format Article
series Journal of Mathematical Cryptology
spelling doaj-art-cfa734a5a4254484a8dd048f349653da2025-08-20T01:54:19ZengDe GruyterJournal of Mathematical Cryptology1862-29842025-04-011911799210.1515/jmc-2024-0017The least primitive roots mod pCarella Nelson0Department of Mathematics, Fordham University and CUNY, Bronx, NY 10458, New York, United States of AmericaLet p>1p\gt 1 be a large prime number, and let ε>0\varepsilon \gt 0 be a small number. The established unconditional upper bounds of the least primitive root u≠±1,v2u\ne \pm 1,{v}^{2} in the prime finite field Fp{{\mathbb{F}}}_{p} have exponential magnitudes u≪p1⁄4+εu\ll {p}^{1/4+\varepsilon }. This note contributes a new result to the literature. It proves that the upper bound of the least primitive root has polynomial magnitude u≤(logp)1+εu\le {\left(\log p)}^{1+\varepsilon } unconditionally.https://doi.org/10.1515/jmc-2024-0017primitive rootleast primitive rootfinite fieldcryptographic algorithmcomplexity theory11a0711n0511n32
spellingShingle Carella Nelson
The least primitive roots mod p
Journal of Mathematical Cryptology
primitive root
least primitive root
finite field
cryptographic algorithm
complexity theory
11a07
11n05
11n32
title The least primitive roots mod p
title_full The least primitive roots mod p
title_fullStr The least primitive roots mod p
title_full_unstemmed The least primitive roots mod p
title_short The least primitive roots mod p
title_sort least primitive roots mod p
topic primitive root
least primitive root
finite field
cryptographic algorithm
complexity theory
11a07
11n05
11n32
url https://doi.org/10.1515/jmc-2024-0017
work_keys_str_mv AT carellanelson theleastprimitiverootsmodp
AT carellanelson leastprimitiverootsmodp