The least primitive roots mod p

Let p>1p\gt 1 be a large prime number, and let ε>0\varepsilon \gt 0 be a small number. The established unconditional upper bounds of the least primitive root u≠±1,v2u\ne \pm 1,{v}^{2} in the prime finite field Fp{{\mathbb{F}}}_{p} have exponential magnitudes u≪p1⁄4+εu\ll {p}^{1/4+\varepsilon }...

Full description

Saved in:
Bibliographic Details
Main Author: Carella Nelson
Format: Article
Language:English
Published: De Gruyter 2025-04-01
Series:Journal of Mathematical Cryptology
Subjects:
Online Access:https://doi.org/10.1515/jmc-2024-0017
Tags: Add Tag
No Tags, Be the first to tag this record!