Oscillatory Forward-Looking Sonar Based 3D Reconstruction Method for Autonomous Underwater Vehicle Obstacle Avoidance

Autonomous underwater vehicle inspection in 3D environments presents significant challenges in spatial mapping for obstacle avoidance and motion control. Current solutions rely on either 2D forward-looking sonar or expensive 3D sonar systems. To address these limitations, this study proposes a cost-...

Full description

Saved in:
Bibliographic Details
Main Authors: Hui Zhi, Zhixin Zhou, Haiteng Wu, Zheng Chen, Shaohua Tian, Yujiong Zhang, Yongwei Ruan
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/13/5/943
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Autonomous underwater vehicle inspection in 3D environments presents significant challenges in spatial mapping for obstacle avoidance and motion control. Current solutions rely on either 2D forward-looking sonar or expensive 3D sonar systems. To address these limitations, this study proposes a cost-effective 3D reconstruction method using an oscillatory forward-looking sonar with a pan-tilt mechanism that extends perception from a 2D plane to a 75-degree spatial range. Additionally, a polar coordinate-based frontier extraction method for sequential sonar images is introduced that captures more complete contour frontiers. Through bridge pier scanning validation, the system shows a maximum measurement error of 0.203 m. Furthermore, the method is integrated with the Ego-Planner path planning algorithm and nonlinear Model Predictive Control (MPC) algorithm, creating a comprehensive underwater 3D perception, planning, and control system. Gazebo simulations confirm that generated 3D point clouds effectively support the Ego-Planner method. Under localisation errors of 0 m, 0.25 m, and 0.5 m, obstacle avoidance success rates are 100%, 60%, and 30%, respectively, demonstrating the method’s potential for autonomous operations in complex underwater environments.
ISSN:2077-1312