Sharp Power Mean Bounds for the One-Parameter Harmonic Mean

We present the best possible parameters α=α(r) and β=β(r) such that the double inequality Mα(a,b)<Hr(a,b)<Mβ(a,b) holds for all r∈(0, 1/2) and a, b>0 with a≠b, where Mp(a, b)=[(ap+bp)/2]1/p  (p≠0) and M0(a, b)=ab and Hr(a, b)=2[ra+(1-r)b][rb+(1-r)a]/(a+b) are the power and one-parameter har...

Full description

Saved in:
Bibliographic Details
Main Authors: Yu-Ming Chu, Li-Min Wu, Ying-Qing Song
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2015/517647
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832565474579185664
author Yu-Ming Chu
Li-Min Wu
Ying-Qing Song
author_facet Yu-Ming Chu
Li-Min Wu
Ying-Qing Song
author_sort Yu-Ming Chu
collection DOAJ
description We present the best possible parameters α=α(r) and β=β(r) such that the double inequality Mα(a,b)<Hr(a,b)<Mβ(a,b) holds for all r∈(0, 1/2) and a, b>0 with a≠b, where Mp(a, b)=[(ap+bp)/2]1/p  (p≠0) and M0(a, b)=ab and Hr(a, b)=2[ra+(1-r)b][rb+(1-r)a]/(a+b) are the power and one-parameter harmonic means of a and b, respectively.
format Article
id doaj-art-ce8a6ea2f87d4a3e9459d273ac9e89d5
institution Kabale University
issn 2314-8896
2314-8888
language English
publishDate 2015-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces
spelling doaj-art-ce8a6ea2f87d4a3e9459d273ac9e89d52025-02-03T01:07:32ZengWileyJournal of Function Spaces2314-88962314-88882015-01-01201510.1155/2015/517647517647Sharp Power Mean Bounds for the One-Parameter Harmonic MeanYu-Ming Chu0Li-Min Wu1Ying-Qing Song2School of Mathematics and Computation Sciences, Hunan City University, Yiyang 413000, ChinaDepartment of Mathematics, Huzhou University, Huzhou 313000, ChinaSchool of Mathematics and Computation Sciences, Hunan City University, Yiyang 413000, ChinaWe present the best possible parameters α=α(r) and β=β(r) such that the double inequality Mα(a,b)<Hr(a,b)<Mβ(a,b) holds for all r∈(0, 1/2) and a, b>0 with a≠b, where Mp(a, b)=[(ap+bp)/2]1/p  (p≠0) and M0(a, b)=ab and Hr(a, b)=2[ra+(1-r)b][rb+(1-r)a]/(a+b) are the power and one-parameter harmonic means of a and b, respectively.http://dx.doi.org/10.1155/2015/517647
spellingShingle Yu-Ming Chu
Li-Min Wu
Ying-Qing Song
Sharp Power Mean Bounds for the One-Parameter Harmonic Mean
Journal of Function Spaces
title Sharp Power Mean Bounds for the One-Parameter Harmonic Mean
title_full Sharp Power Mean Bounds for the One-Parameter Harmonic Mean
title_fullStr Sharp Power Mean Bounds for the One-Parameter Harmonic Mean
title_full_unstemmed Sharp Power Mean Bounds for the One-Parameter Harmonic Mean
title_short Sharp Power Mean Bounds for the One-Parameter Harmonic Mean
title_sort sharp power mean bounds for the one parameter harmonic mean
url http://dx.doi.org/10.1155/2015/517647
work_keys_str_mv AT yumingchu sharppowermeanboundsfortheoneparameterharmonicmean
AT liminwu sharppowermeanboundsfortheoneparameterharmonicmean
AT yingqingsong sharppowermeanboundsfortheoneparameterharmonicmean