Simultaneous count data feature selection and clustering using Multinomial Nested Dirichlet Mixture
The elevating effect of the curse of dimensionality in count data has made clustering a challenging task. This paper solves this by adopting the concept of feature saliency as a feature selection method in the context of using the Multinomial Nested Dirichlet Mixture (MNDM). The MNDM is a generaliza...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
LibraryPress@UF
2024-05-01
|
| Series: | Proceedings of the International Florida Artificial Intelligence Research Society Conference |
| Subjects: | |
| Online Access: | https://journals.flvc.org/FLAIRS/article/view/135262 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|