Enhancing Collaborative Learning Environments: A Multi-Feature Fusion Model for Disruptive Talk Detection
Effective detection and identification of disruptive talk is of significant practical value for improving collaborative learning quality and optimizing the online education environment. However, existing research on disruptive talk detection, which often relies on features from a single dimension, s...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IEEE
2025-01-01
|
| Series: | IEEE Access |
| Subjects: | |
| Online Access: | https://ieeexplore.ieee.org/document/10945836/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850185119500861440 |
|---|---|
| author | Shuang Yu Junmin Ye Chen Zhang Qingtang Liu Sheng Luo Mengting Nan Qi Xu Xinghan Yin |
| author_facet | Shuang Yu Junmin Ye Chen Zhang Qingtang Liu Sheng Luo Mengting Nan Qi Xu Xinghan Yin |
| author_sort | Shuang Yu |
| collection | DOAJ |
| description | Effective detection and identification of disruptive talk is of significant practical value for improving collaborative learning quality and optimizing the online education environment. However, existing research on disruptive talk detection, which often relies on features from a single dimension, struggles to comprehensively capture the semantic information of talk and learner characteristics, thereby limiting the detection effectiveness. To address this, we propose a multi-feature fusion model. Based on social cognitive theory, this model captures learner features from multiple dimensions, including the week of discussion, talk length, sentiment polarity of talk, the learner’s demographic factor and pre-test knowledge level. The model integrates both Bidirectional Encoder Representations from Transformers (BERT) and Bidirectional Long Short-Term Memory (Bi-LSTM) models. This integration achieves deep fusion of talk semantics and time-series features, thereby enabling more accurate identification of disruptive talk. Experimental results on real classroom datasets show that our method outperforms existing baseline models across multiple metrics, fully demonstrating its effectiveness and practical value. This research not only advances the development of disruptive talk detection but also provides feasible insights for optimizing collaborative learning environments. Future work will explore the scalability of this model in different educational settings, and investigate its integration with real-time learning platforms. |
| format | Article |
| id | doaj-art-cd7d1c3a5dd740be963cb4209e76c415 |
| institution | OA Journals |
| issn | 2169-3536 |
| language | English |
| publishDate | 2025-01-01 |
| publisher | IEEE |
| record_format | Article |
| series | IEEE Access |
| spelling | doaj-art-cd7d1c3a5dd740be963cb4209e76c4152025-08-20T02:16:49ZengIEEEIEEE Access2169-35362025-01-0113612616127310.1109/ACCESS.2025.355636910945836Enhancing Collaborative Learning Environments: A Multi-Feature Fusion Model for Disruptive Talk DetectionShuang Yu0https://orcid.org/0009-0007-5780-6389Junmin Ye1Chen Zhang2https://orcid.org/0000-0002-4357-4560Qingtang Liu3https://orcid.org/0000-0001-9410-9856Sheng Luo4Mengting Nan5Qi Xu6Xinghan Yin7Faculty of Artificial Intelligence in Education, Central China Normal University, Wuhan, Hubei, ChinaSchool of Computer, Central China Normal University, Wuhan, Hubei, ChinaFinancial Office, Central China Normal University, Wuhan, Hubei, ChinaHubei Research Center for Educational Informationization, Central China Normal University, Wuhan, ChinaSchool of Computer, Central China Normal University, Wuhan, Hubei, ChinaSchool of Computer, Central China Normal University, Wuhan, Hubei, ChinaFaculty of Artificial Intelligence in Education, Central China Normal University, Wuhan, Hubei, ChinaSchool of Computer, Central China Normal University, Wuhan, Hubei, ChinaEffective detection and identification of disruptive talk is of significant practical value for improving collaborative learning quality and optimizing the online education environment. However, existing research on disruptive talk detection, which often relies on features from a single dimension, struggles to comprehensively capture the semantic information of talk and learner characteristics, thereby limiting the detection effectiveness. To address this, we propose a multi-feature fusion model. Based on social cognitive theory, this model captures learner features from multiple dimensions, including the week of discussion, talk length, sentiment polarity of talk, the learner’s demographic factor and pre-test knowledge level. The model integrates both Bidirectional Encoder Representations from Transformers (BERT) and Bidirectional Long Short-Term Memory (Bi-LSTM) models. This integration achieves deep fusion of talk semantics and time-series features, thereby enabling more accurate identification of disruptive talk. Experimental results on real classroom datasets show that our method outperforms existing baseline models across multiple metrics, fully demonstrating its effectiveness and practical value. This research not only advances the development of disruptive talk detection but also provides feasible insights for optimizing collaborative learning environments. Future work will explore the scalability of this model in different educational settings, and investigate its integration with real-time learning platforms.https://ieeexplore.ieee.org/document/10945836/Disruptive talk detectionmulti-feature fusioncollaborative dialogueeducational technology |
| spellingShingle | Shuang Yu Junmin Ye Chen Zhang Qingtang Liu Sheng Luo Mengting Nan Qi Xu Xinghan Yin Enhancing Collaborative Learning Environments: A Multi-Feature Fusion Model for Disruptive Talk Detection IEEE Access Disruptive talk detection multi-feature fusion collaborative dialogue educational technology |
| title | Enhancing Collaborative Learning Environments: A Multi-Feature Fusion Model for Disruptive Talk Detection |
| title_full | Enhancing Collaborative Learning Environments: A Multi-Feature Fusion Model for Disruptive Talk Detection |
| title_fullStr | Enhancing Collaborative Learning Environments: A Multi-Feature Fusion Model for Disruptive Talk Detection |
| title_full_unstemmed | Enhancing Collaborative Learning Environments: A Multi-Feature Fusion Model for Disruptive Talk Detection |
| title_short | Enhancing Collaborative Learning Environments: A Multi-Feature Fusion Model for Disruptive Talk Detection |
| title_sort | enhancing collaborative learning environments a multi feature fusion model for disruptive talk detection |
| topic | Disruptive talk detection multi-feature fusion collaborative dialogue educational technology |
| url | https://ieeexplore.ieee.org/document/10945836/ |
| work_keys_str_mv | AT shuangyu enhancingcollaborativelearningenvironmentsamultifeaturefusionmodelfordisruptivetalkdetection AT junminye enhancingcollaborativelearningenvironmentsamultifeaturefusionmodelfordisruptivetalkdetection AT chenzhang enhancingcollaborativelearningenvironmentsamultifeaturefusionmodelfordisruptivetalkdetection AT qingtangliu enhancingcollaborativelearningenvironmentsamultifeaturefusionmodelfordisruptivetalkdetection AT shengluo enhancingcollaborativelearningenvironmentsamultifeaturefusionmodelfordisruptivetalkdetection AT mengtingnan enhancingcollaborativelearningenvironmentsamultifeaturefusionmodelfordisruptivetalkdetection AT qixu enhancingcollaborativelearningenvironmentsamultifeaturefusionmodelfordisruptivetalkdetection AT xinghanyin enhancingcollaborativelearningenvironmentsamultifeaturefusionmodelfordisruptivetalkdetection |