A Fractional-Order Chaotic System with an Infinite Number of Equilibrium Points

A new 4D fractional-order chaotic system, which has an infinite number of equilibrium points, is introduced. There is no-chaotic behavior for its corresponded integer-order system. We obtain that the largest Lyapunov exponent of this 4D fractional-order chaotic system is 0.8939 and yield the chaotic...

Full description

Saved in:
Bibliographic Details
Main Authors: Ping Zhou, Kun Huang, Chun-de Yang
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2013/910189
Tags: Add Tag
No Tags, Be the first to tag this record!