A Fractional-Order Chaotic System with an Infinite Number of Equilibrium Points
A new 4D fractional-order chaotic system, which has an infinite number of equilibrium points, is introduced. There is no-chaotic behavior for its corresponded integer-order system. We obtain that the largest Lyapunov exponent of this 4D fractional-order chaotic system is 0.8939 and yield the chaotic...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2013-01-01
|
| Series: | Discrete Dynamics in Nature and Society |
| Online Access: | http://dx.doi.org/10.1155/2013/910189 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|