A comprehensive review of catalyst deactivation and regeneration in heavy oil hydroprocessing

Catalyst deactivation and regeneration are critical aspects of heavy oil hydroprocessing. This review provides a comprehensive overview of the factors contributing to catalyst deactivation, including coke formation, metal and other heteroelement poisoning, and active metal sintering. We delve into t...

Full description

Saved in:
Bibliographic Details
Main Authors: Phuong T.H. Pham, Cham Q. Pham, Thi-Tam Dam, Quang-Anh Nguyen, Tung M. Nguyen
Format: Article
Language:English
Published: Elsevier 2025-03-01
Series:Fuel Processing Technology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0378382024001401
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Catalyst deactivation and regeneration are critical aspects of heavy oil hydroprocessing. This review provides a comprehensive overview of the factors contributing to catalyst deactivation, including coke formation, metal and other heteroelement poisoning, and active metal sintering. We delve into the mechanisms underlying these deactivation processes and discuss their impact on catalyst performance and reactor operations. Furthermore, the review explores various catalyst regeneration techniques, such as combustion and gasification techniques. We evaluate the effectiveness of these methods in removing coke and restoring catalyst activity. Additionally, we discuss strategies for mitigating coke formation, including the development of more coke-resistant catalysts and the addition of solvents and surfactants. Refineries can optimize their operations, improve product yields, and minimize environmental impact by understanding the causes of catalyst deactivation and the effectiveness of different regeneration techniques.
ISSN:0378-3820