A Comparative Study of Customized Algorithms for Anomaly Detection in Industry-Specific Power Data
This study compares and analyzes statistical, machine learning, and deep learning outlier-detection methods on real power-usage data from the metal, food, and chemical industries to propose the optimal model for improving energy-consumption efficiency. In the metal industry, a Z-Score-based statisti...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Energies |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1996-1073/18/14/3720 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|