Optimal Inequalities between Harmonic, Geometric, Logarithmic, and Arithmetic-Geometric Means

We find the least values p, q, and s in (0, 1/2) such that the inequalities H(pa+(1 − p)b, pb+(1 − p)a)>AG(a,b), G(qa+(1−q)b, qb+(1−q)a)>AG(a,b), and L(sa+(1−s)b,sb+(1−s)a)> AG(a,b) hold for all a,b>0 with a≠b, respectively. Here AG(a,b), H(a,b), G(a,b), and L(a,b) denote the arithmetic-...

Full description

Saved in:
Bibliographic Details
Main Authors: Yu-Ming Chu, Miao-Kun Wang
Format: Article
Language:English
Published: Wiley 2011-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2011/618929
Tags: Add Tag
No Tags, Be the first to tag this record!