Machine learning-led semi-automated medium optimization reveals salt as key for flaviolin production in Pseudomonas putida

Abstract Although synthetic biology can produce valuable chemicals in a renewable manner, its progress is still hindered by a lack of predictive capabilities. Media optimization is a critical, and often overlooked, process which is essential to obtain the titers, rates and yields needed for commerci...

Full description

Saved in:
Bibliographic Details
Main Authors: Apostolos Zournas, Matthew R. Incha, Tijana Radivojevic, Vincent Blay, Jose Manuel Martí, Zak Costello, Matthias Schmidt, Tan Chung, Mitchell G. Thompson, Allison Pearson, Patrick C. Kinnunen, Thomas Eng, Christopher E. Lawson, Stephen Tan, Tadeusz Ogorzalek, Nurgul Kaplan, Mark Forrer, Tyler Backman, Aindrila Mukhopadhyay, Nathan J. Hillson, Jay D. Keasling, Hector Garcia Martin
Format: Article
Language:English
Published: Nature Portfolio 2025-04-01
Series:Communications Biology
Online Access:https://doi.org/10.1038/s42003-025-08039-2
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849725145315278848
author Apostolos Zournas
Matthew R. Incha
Tijana Radivojevic
Vincent Blay
Jose Manuel Martí
Zak Costello
Matthias Schmidt
Tan Chung
Mitchell G. Thompson
Allison Pearson
Patrick C. Kinnunen
Thomas Eng
Christopher E. Lawson
Stephen Tan
Tadeusz Ogorzalek
Nurgul Kaplan
Mark Forrer
Tyler Backman
Aindrila Mukhopadhyay
Nathan J. Hillson
Jay D. Keasling
Hector Garcia Martin
author_facet Apostolos Zournas
Matthew R. Incha
Tijana Radivojevic
Vincent Blay
Jose Manuel Martí
Zak Costello
Matthias Schmidt
Tan Chung
Mitchell G. Thompson
Allison Pearson
Patrick C. Kinnunen
Thomas Eng
Christopher E. Lawson
Stephen Tan
Tadeusz Ogorzalek
Nurgul Kaplan
Mark Forrer
Tyler Backman
Aindrila Mukhopadhyay
Nathan J. Hillson
Jay D. Keasling
Hector Garcia Martin
author_sort Apostolos Zournas
collection DOAJ
description Abstract Although synthetic biology can produce valuable chemicals in a renewable manner, its progress is still hindered by a lack of predictive capabilities. Media optimization is a critical, and often overlooked, process which is essential to obtain the titers, rates and yields needed for commercial viability. Here, we present a molecule- and host-agnostic active learning process for media optimization that is enabled by a fast and highly repeatable semi-automated pipeline. Its application yielded 60% and 70% increases in titer, and 350% increase in process yield in three different campaigns for flaviolin production in Pseudomonas putida KT2440. Explainable Artificial Intelligence techniques pinpointed that, surprisingly, common salt (NaCl) is the most important component influencing production. The optimal salt concentration is very high, comparable to seawater and close to the limits that P. putida can tolerate. The availability of fast Design-Build-Test-Learn (DBTL) cycles allowed us to show that performance improvements for active learning are rarely monotonous. This work illustrates how machine learning and automation can change the paradigm of current synthetic biology research to make it more effective and informative, and suggests a cost-effective and underexploited strategy to facilitate the high titers, rates and yields essential for commercial viability.
format Article
id doaj-art-bfd6f58132da4ec2b154977df7a953d2
institution DOAJ
issn 2399-3642
language English
publishDate 2025-04-01
publisher Nature Portfolio
record_format Article
series Communications Biology
spelling doaj-art-bfd6f58132da4ec2b154977df7a953d22025-08-20T03:10:32ZengNature PortfolioCommunications Biology2399-36422025-04-018111410.1038/s42003-025-08039-2Machine learning-led semi-automated medium optimization reveals salt as key for flaviolin production in Pseudomonas putidaApostolos Zournas0Matthew R. Incha1Tijana Radivojevic2Vincent Blay3Jose Manuel Martí4Zak Costello5Matthias Schmidt6Tan Chung7Mitchell G. Thompson8Allison Pearson9Patrick C. Kinnunen10Thomas Eng11Christopher E. Lawson12Stephen Tan13Tadeusz Ogorzalek14Nurgul Kaplan15Mark Forrer16Tyler Backman17Aindrila Mukhopadhyay18Nathan J. Hillson19Jay D. Keasling20Hector Garcia Martin21Biological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBiological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBiological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBiological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBiological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBiological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBiological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBiological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBiological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBiological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBiological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBiological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBiological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBiological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBiological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBiological Systems and Engineering Division, Lawrence Berkeley National LaboratoryDepartment of Energy Agile BioFoundryBiological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBiological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBiological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBiological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBiological Systems and Engineering Division, Lawrence Berkeley National LaboratoryAbstract Although synthetic biology can produce valuable chemicals in a renewable manner, its progress is still hindered by a lack of predictive capabilities. Media optimization is a critical, and often overlooked, process which is essential to obtain the titers, rates and yields needed for commercial viability. Here, we present a molecule- and host-agnostic active learning process for media optimization that is enabled by a fast and highly repeatable semi-automated pipeline. Its application yielded 60% and 70% increases in titer, and 350% increase in process yield in three different campaigns for flaviolin production in Pseudomonas putida KT2440. Explainable Artificial Intelligence techniques pinpointed that, surprisingly, common salt (NaCl) is the most important component influencing production. The optimal salt concentration is very high, comparable to seawater and close to the limits that P. putida can tolerate. The availability of fast Design-Build-Test-Learn (DBTL) cycles allowed us to show that performance improvements for active learning are rarely monotonous. This work illustrates how machine learning and automation can change the paradigm of current synthetic biology research to make it more effective and informative, and suggests a cost-effective and underexploited strategy to facilitate the high titers, rates and yields essential for commercial viability.https://doi.org/10.1038/s42003-025-08039-2
spellingShingle Apostolos Zournas
Matthew R. Incha
Tijana Radivojevic
Vincent Blay
Jose Manuel Martí
Zak Costello
Matthias Schmidt
Tan Chung
Mitchell G. Thompson
Allison Pearson
Patrick C. Kinnunen
Thomas Eng
Christopher E. Lawson
Stephen Tan
Tadeusz Ogorzalek
Nurgul Kaplan
Mark Forrer
Tyler Backman
Aindrila Mukhopadhyay
Nathan J. Hillson
Jay D. Keasling
Hector Garcia Martin
Machine learning-led semi-automated medium optimization reveals salt as key for flaviolin production in Pseudomonas putida
Communications Biology
title Machine learning-led semi-automated medium optimization reveals salt as key for flaviolin production in Pseudomonas putida
title_full Machine learning-led semi-automated medium optimization reveals salt as key for flaviolin production in Pseudomonas putida
title_fullStr Machine learning-led semi-automated medium optimization reveals salt as key for flaviolin production in Pseudomonas putida
title_full_unstemmed Machine learning-led semi-automated medium optimization reveals salt as key for flaviolin production in Pseudomonas putida
title_short Machine learning-led semi-automated medium optimization reveals salt as key for flaviolin production in Pseudomonas putida
title_sort machine learning led semi automated medium optimization reveals salt as key for flaviolin production in pseudomonas putida
url https://doi.org/10.1038/s42003-025-08039-2
work_keys_str_mv AT apostoloszournas machinelearningledsemiautomatedmediumoptimizationrevealssaltaskeyforflaviolinproductioninpseudomonasputida
AT matthewrincha machinelearningledsemiautomatedmediumoptimizationrevealssaltaskeyforflaviolinproductioninpseudomonasputida
AT tijanaradivojevic machinelearningledsemiautomatedmediumoptimizationrevealssaltaskeyforflaviolinproductioninpseudomonasputida
AT vincentblay machinelearningledsemiautomatedmediumoptimizationrevealssaltaskeyforflaviolinproductioninpseudomonasputida
AT josemanuelmarti machinelearningledsemiautomatedmediumoptimizationrevealssaltaskeyforflaviolinproductioninpseudomonasputida
AT zakcostello machinelearningledsemiautomatedmediumoptimizationrevealssaltaskeyforflaviolinproductioninpseudomonasputida
AT matthiasschmidt machinelearningledsemiautomatedmediumoptimizationrevealssaltaskeyforflaviolinproductioninpseudomonasputida
AT tanchung machinelearningledsemiautomatedmediumoptimizationrevealssaltaskeyforflaviolinproductioninpseudomonasputida
AT mitchellgthompson machinelearningledsemiautomatedmediumoptimizationrevealssaltaskeyforflaviolinproductioninpseudomonasputida
AT allisonpearson machinelearningledsemiautomatedmediumoptimizationrevealssaltaskeyforflaviolinproductioninpseudomonasputida
AT patrickckinnunen machinelearningledsemiautomatedmediumoptimizationrevealssaltaskeyforflaviolinproductioninpseudomonasputida
AT thomaseng machinelearningledsemiautomatedmediumoptimizationrevealssaltaskeyforflaviolinproductioninpseudomonasputida
AT christopherelawson machinelearningledsemiautomatedmediumoptimizationrevealssaltaskeyforflaviolinproductioninpseudomonasputida
AT stephentan machinelearningledsemiautomatedmediumoptimizationrevealssaltaskeyforflaviolinproductioninpseudomonasputida
AT tadeuszogorzalek machinelearningledsemiautomatedmediumoptimizationrevealssaltaskeyforflaviolinproductioninpseudomonasputida
AT nurgulkaplan machinelearningledsemiautomatedmediumoptimizationrevealssaltaskeyforflaviolinproductioninpseudomonasputida
AT markforrer machinelearningledsemiautomatedmediumoptimizationrevealssaltaskeyforflaviolinproductioninpseudomonasputida
AT tylerbackman machinelearningledsemiautomatedmediumoptimizationrevealssaltaskeyforflaviolinproductioninpseudomonasputida
AT aindrilamukhopadhyay machinelearningledsemiautomatedmediumoptimizationrevealssaltaskeyforflaviolinproductioninpseudomonasputida
AT nathanjhillson machinelearningledsemiautomatedmediumoptimizationrevealssaltaskeyforflaviolinproductioninpseudomonasputida
AT jaydkeasling machinelearningledsemiautomatedmediumoptimizationrevealssaltaskeyforflaviolinproductioninpseudomonasputida
AT hectorgarciamartin machinelearningledsemiautomatedmediumoptimizationrevealssaltaskeyforflaviolinproductioninpseudomonasputida