Labelizer: systematic selection of protein residues for covalent fluorophore labeling

Abstract Attaching fluorescent dyes to biomolecules is essential for assays in biology, biochemistry, biophysics, biomedicine and imaging. A systematic approach for the selection of suitable labeling sites in macromolecules, particularly proteins, is missing. We present a quantitative strategy to id...

Full description

Saved in:
Bibliographic Details
Main Authors: Christian Gebhardt, Pascal Bawidamann, Anna-Katharina Spring, Robin Schenk, Konstantin Schütze, Gabriel G. Moya Muñoz, Nicolas D. Wendler, Douglas A. Griffith, Jan Lipfert, Thorben Cordes
Format: Article
Language:English
Published: Nature Portfolio 2025-05-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-58602-y
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850206359555932160
author Christian Gebhardt
Pascal Bawidamann
Anna-Katharina Spring
Robin Schenk
Konstantin Schütze
Gabriel G. Moya Muñoz
Nicolas D. Wendler
Douglas A. Griffith
Jan Lipfert
Thorben Cordes
author_facet Christian Gebhardt
Pascal Bawidamann
Anna-Katharina Spring
Robin Schenk
Konstantin Schütze
Gabriel G. Moya Muñoz
Nicolas D. Wendler
Douglas A. Griffith
Jan Lipfert
Thorben Cordes
author_sort Christian Gebhardt
collection DOAJ
description Abstract Attaching fluorescent dyes to biomolecules is essential for assays in biology, biochemistry, biophysics, biomedicine and imaging. A systematic approach for the selection of suitable labeling sites in macromolecules, particularly proteins, is missing. We present a quantitative strategy to identify such protein residues using a naïve Bayes classifier. Analysis of >100 proteins with ~400 successfully labeled residues allows to identify four parameters, which can rank residues via a single metric (the label score). The approach is tested and benchmarked by inspection of literature data and experiments on the expression level, degree of labelling, and success in FRET assays of different bacterial substrate binding proteins. With the paper, we provide a python package and webserver ( https://labelizer.bio.lmu.de/ ), that performs an analysis of a pdb-structure (or model), label score calculation, and FRET assay scoring. The approach can facilitate to build up a central open-access database to continuously refine the label-site selection in proteins.
format Article
id doaj-art-bde863d6963f460ab45e7674827a457e
institution OA Journals
issn 2041-1723
language English
publishDate 2025-05-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-bde863d6963f460ab45e7674827a457e2025-08-20T02:10:50ZengNature PortfolioNature Communications2041-17232025-05-0116111610.1038/s41467-025-58602-yLabelizer: systematic selection of protein residues for covalent fluorophore labelingChristian Gebhardt0Pascal Bawidamann1Anna-Katharina Spring2Robin Schenk3Konstantin Schütze4Gabriel G. Moya Muñoz5Nicolas D. Wendler6Douglas A. Griffith7Jan Lipfert8Thorben Cordes9Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4Klinikum rechts der Isar, Technische Universität München, Klinik und Poliklinik für Innere Medizin IIPhysical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4Department of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Amalienstr. 54Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4Abstract Attaching fluorescent dyes to biomolecules is essential for assays in biology, biochemistry, biophysics, biomedicine and imaging. A systematic approach for the selection of suitable labeling sites in macromolecules, particularly proteins, is missing. We present a quantitative strategy to identify such protein residues using a naïve Bayes classifier. Analysis of >100 proteins with ~400 successfully labeled residues allows to identify four parameters, which can rank residues via a single metric (the label score). The approach is tested and benchmarked by inspection of literature data and experiments on the expression level, degree of labelling, and success in FRET assays of different bacterial substrate binding proteins. With the paper, we provide a python package and webserver ( https://labelizer.bio.lmu.de/ ), that performs an analysis of a pdb-structure (or model), label score calculation, and FRET assay scoring. The approach can facilitate to build up a central open-access database to continuously refine the label-site selection in proteins.https://doi.org/10.1038/s41467-025-58602-y
spellingShingle Christian Gebhardt
Pascal Bawidamann
Anna-Katharina Spring
Robin Schenk
Konstantin Schütze
Gabriel G. Moya Muñoz
Nicolas D. Wendler
Douglas A. Griffith
Jan Lipfert
Thorben Cordes
Labelizer: systematic selection of protein residues for covalent fluorophore labeling
Nature Communications
title Labelizer: systematic selection of protein residues for covalent fluorophore labeling
title_full Labelizer: systematic selection of protein residues for covalent fluorophore labeling
title_fullStr Labelizer: systematic selection of protein residues for covalent fluorophore labeling
title_full_unstemmed Labelizer: systematic selection of protein residues for covalent fluorophore labeling
title_short Labelizer: systematic selection of protein residues for covalent fluorophore labeling
title_sort labelizer systematic selection of protein residues for covalent fluorophore labeling
url https://doi.org/10.1038/s41467-025-58602-y
work_keys_str_mv AT christiangebhardt labelizersystematicselectionofproteinresiduesforcovalentfluorophorelabeling
AT pascalbawidamann labelizersystematicselectionofproteinresiduesforcovalentfluorophorelabeling
AT annakatharinaspring labelizersystematicselectionofproteinresiduesforcovalentfluorophorelabeling
AT robinschenk labelizersystematicselectionofproteinresiduesforcovalentfluorophorelabeling
AT konstantinschutze labelizersystematicselectionofproteinresiduesforcovalentfluorophorelabeling
AT gabrielgmoyamunoz labelizersystematicselectionofproteinresiduesforcovalentfluorophorelabeling
AT nicolasdwendler labelizersystematicselectionofproteinresiduesforcovalentfluorophorelabeling
AT douglasagriffith labelizersystematicselectionofproteinresiduesforcovalentfluorophorelabeling
AT janlipfert labelizersystematicselectionofproteinresiduesforcovalentfluorophorelabeling
AT thorbencordes labelizersystematicselectionofproteinresiduesforcovalentfluorophorelabeling