KeyEE: Enhancing Low-Resource Generative Event Extraction with Auxiliary Keyword Sub-Prompt

Event Extraction (EE) is a key task in information extraction, which requires high-quality annotated data that are often costly to obtain. Traditional classification-based methods suffer from low-resource scenarios due to the lack of label semantics and fine-grained annotations. While recent approac...

Full description

Saved in:
Bibliographic Details
Main Authors: Junwen Duan, Xincheng Liao, Ying An, Jianxin Wang
Format: Article
Language:English
Published: Tsinghua University Press 2024-06-01
Series:Big Data Mining and Analytics
Subjects:
Online Access:https://www.sciopen.com/article/10.26599/BDMA.2023.9020036
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Event Extraction (EE) is a key task in information extraction, which requires high-quality annotated data that are often costly to obtain. Traditional classification-based methods suffer from low-resource scenarios due to the lack of label semantics and fine-grained annotations. While recent approaches have endeavored to address EE through a more data-efficient generative process, they often overlook event keywords, which are vital for EE. To tackle these challenges, we introduce KeyEE, a multi-prompt learning strategy that improves low-resource event extraction by Event Keywords Extraction(EKE). We suggest employing an auxiliary EKE sub-prompt and concurrently training both EE and EKE with a shared pre-trained language model. With the auxiliary sub-prompt, KeyEE learns event keywords knowledge implicitly, thereby reducing the dependence on annotated data. Furthermore, we investigate and analyze various EKE sub-prompt strategies to encourage further research in this area. Our experiments on benchmark datasets ACE2005 and ERE show that KeyEE achieves significant improvement in low-resource settings and sets new state-of-the-art results.
ISSN:2096-0654