Investigating the contributors to hit-and-run crashes using gradient boosting decision trees.
A classification prediction model is established based on a nonlinear method-Gradient Boosting Decision Tree (GBDT) to investigate the factors contributing to a perpetrator's escape behavior in hit-and-run crashes. Given the U.S. Crash Report Sampling System (CRSS) dataset, the model is trained...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Public Library of Science (PLoS)
2025-01-01
|
| Series: | PLoS ONE |
| Online Access: | https://doi.org/10.1371/journal.pone.0314939 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|