Image Enhancement under Data-Dependent Multiplicative Gamma Noise

An edge enhancement filter is proposed for denoising and enhancing images corrupted with data-dependent noise which is observed to follow a Gamma distribution. The filter is equipped with three terms designed to perform three different tasks. The first term is an anisotropic diffusion term which is...

Full description

Saved in:
Bibliographic Details
Main Authors: Jidesh Pacheeripadikkal, Bini Anattu
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Applied Computational Intelligence and Soft Computing
Online Access:http://dx.doi.org/10.1155/2014/981932
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An edge enhancement filter is proposed for denoising and enhancing images corrupted with data-dependent noise which is observed to follow a Gamma distribution. The filter is equipped with three terms designed to perform three different tasks. The first term is an anisotropic diffusion term which is derived from a locally adaptive p-laplacian functional. The second term is an enhancement term or a shock term which imparts a shock effect at the edge points making them sharp. The third term is a reactive term which is derived based on the maximum a posteriori (MAP) estimator and this term helps the diffusive term to perform a Gamma distributive data-dependent multiplicative noise removal from images. And moreover, this reactive term ensures that deviation of the restored image from the original one is minimum. This proposed filter is compared with the state-of-the-art restoration models proposed for data-dependent multiplicative noise.
ISSN:1687-9724
1687-9732