Data-driven prediction of rate of penetration (ROP) in drilling operations using advanced machine learning models
Abstract Predicting the rate of penetration (ROP) is critical for optimizing drilling performance, yet it remains a complex task due to the interplay of multiple geological and operational parameters. This study comprehensively evaluates machine learning models, utilizing a real-time, high-resolutio...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
SpringerOpen
2025-06-01
|
| Series: | Journal of Petroleum Exploration and Production Technology |
| Subjects: | |
| Online Access: | https://doi.org/10.1007/s13202-025-02018-3 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|